scholarly journals Numerical Prediction of Non-Reacting and Reacting Flow in a Model Gas Turbine Combustor

Author(s):  
Farhad Davoudzadeh ◽  
Nan-Suey Liu

The three-dimensional, viscous, turbulent, reacting and non-reacting flow characteristics of a model gas turbine combustor operating on air/methane are simulated via an unstructured and massively parallel Reynolds-Averaged Navier-Stokes (RANS) code. This serves to demonstrate the capabilities of the code for design and analysis of real combustor engines. The effects of some design features of combustors are examined. In addition, the computed results are validated against experimental data. The numerical model encompasses the whole experimental flow passage, including the flow development sections for the air annulus and the fuel pipe, twelve channel air and fuel swirlers, the combustion chamber, and the tail pipe. A cubic non-linear low-Reynolds number K-e turbulence model is used to model turbulence, whereas the eddy-breakup model of Magnussen and Hjertager is used to account for the turbulence combustion interaction. Several RANS calculations are performed to determine the effects of the geometrical features of the combustor, and of the grid resolution on the flow field. The final grid is an all-hexahedron grid containing approximately two and one half million elements. To provide an inlet condition to the main combustion chamber, consistent with the experimental data, flow swirlers are adjusted along the flow delivery inlet passage. Fine details of the complex flow structure such as helicalring vortices, recirculation zones and vortex cores are well captured by the simulation. Consistent with the experimental results, the computational model predicts a major recirculation zone in the central region immediately downstream of the fuel nozzle, a second recirculation zone in the upstream corner of the combustion chamber, and a lifted flame. Further, the computed results predict the experimental data with reasonable accuracy for both the cold flow and for the reacting flow. It is also shown that small changes to the geometry can have noticeable effects on the combustor flowfield.

Author(s):  
R. Koch ◽  
W. Krebs ◽  
R. Jeckel ◽  
B. Ganz ◽  
S. Wittig

In the context of an extensive experimental investigation of the turbulent, reacting flow in a model gas turbine combustor, the radiation emitted by the confined three-dimensional turbulent propane/air diffusion-flame has been studied. The present study comprises for the first time spectral and time-resolved measurements of the radiative intensity at different axial locations including the reaction zone, the mixing zone and the exit of the model combustor. The radiation measurements are presented together with measurements and CFD-calculations characterizing the reacting flow field. This data set is well suited for the validation of CFD-calculations including radiative heat transfer and also for studying the interaction between turbulence and radiation.


2021 ◽  
pp. 1-25
Author(s):  
Andressa Johnson ◽  
Xinyu Zhao

Abstract One consequence of increasing efficiency of gas turbine combustors is higher temperatures within the combustor. Management of larger heat load has been advanced to protect the combustor wall and turbines, and among those are thermal barrier coatings (TBCs). Historically, both the flame and TBCs have received a simplified radiation treatment using effective absorptivities and emissivities. In this study, non-gray radiation is compared to gray and black radiation by combining three-dimensional Monte Carlo Ray Tracing solution of non-gray flames in a model gas turbine combustor to one-dimensional energy balance within combustor liners. A recent large eddy simulation of a gas turbine combustor is analyzed, where both gray and non-gray models are exercised. A two-band spectral model is employed for the TBC, where a translucent band and an opaque band are identified. A line-by-line treatment for gas-phase radiation is adopted, and the incident radiative energy on the combustor wall is collected using the MCRT solver, where the fraction of radiative energy within the translucent band is collected and compared with those obtained from the blackbody assumption. The temperature along the multi-layered combustor wall is computed and parametric comparison is conducted. The effects of the nongray flame radiation are more prominent at elevated pressures than at atmospheric pressure. The gray model is found to over-predict the TBC temperature, which leads to a difference of approximately 150 K in the prediction of peak temperature on the hot side of the TBC.


1995 ◽  
Vol 117 (3) ◽  
pp. 450-458 ◽  
Author(s):  
J. J. McGuirk ◽  
J. M. L. M. Palma

The present study examines the flow inside the water model of a gas turbine combustor, with the two main objectives of increasing the understanding of this type of flow and providing experimental data to assist the development of mathematical models. The main features of the geometry are the interaction between two rows of radially opposed jets penetrating a cross-flowing axial stream with and without swirl, providing a set of data of relevance to all flows containing these features. The results, obtained by laser Doppler velocimetry, showed that under the present flow conditions, the first row of jets penetrate almost radially into the combustor and split after impingement, giving rise to a region of high turbulence intensity and a toroidal recirculation zone in the head of the combustor. Part 1 discusses the mean and turbulent flowfield, and the detailed study of the region near the impingement of the first row of jets is presented in Part 2 of this paper.


Author(s):  
S. Archer ◽  
A. K. Gupta

Three-dimensional (3-D) flowfield data has been obtained using Particle Image Velocimetry (PIV) for varying swirl distributions in the burner. The 3-D data also allows one determine the local swirl number of the resulting flow. Flow characteristics of the resulting flowfield, both without and with combustion, have been examined for the effect of co- and counter-swirl under lean direct injection conditions using unconfined and confined combustor geometry. Experimental results of the effect of swirl and combustion are presented to simulate the flow dynamics of Lean Direct Injection (LDI) configuration gas turbine combustion. The selected configuration is typical because it does not make use a premixing zone and relies totally on the swirl and the injector to accomplish rapid mixing. Specifically, the effect of radial distribution of combustion air and swirl in a burner are examined under non-burning and burning conditions using propane as the fuel. The present study explores single swirler interaction with the use of an experimental double concentric swirl burner that simulates one swirler of a practical gas turbine combustor. Results showed that both swirl and combustion has significant effect on the characteristics of the internal and external recirculation zones. The calculated local swirl number differs significantly form that estimated using geometrical relationship derived from the vane angle only. The effect of combustion for the confined and unconfined geometries was also been found to be different. In the confined geometry combustion decreases the size of the recirculation zone. This is in contrast to that found for the unconfined conditions. Combustion enhances the recirculation zone in the unconfined geometry. Combustion provides greater velocity magnitudes than their counter non-combustion conditions. The counter-swirl combination resulted in smaller and more well defined internal recirculation regions. The results provide the role of swirl and combustion on the mean and turbulence characteristics of flows over a range of swirl and shear conditions between the inner and outer flow of the burner. This data provides important insights on the flow dynamics in addition to providing data for model validation and model development.


Author(s):  
Andressa L. Johnson ◽  
Xinyu Zhao

Abstract One of the consequences of increasing the efficiency of gas turbine combustors is the higher combustion temperatures within the chamber. Advances on managing larger heat loads have been made to protect the combustor wall and turbines. Among those are thermal barrier coatings (TBCs) deposited on metal walls and forced air cooling such as through effusion holes. Historically, both the flame and TBCs have received a simplified gray treatment using effective absorptivities and emissivities. However, studies have shown that the gray analysis can considerably under-predict the cold metal side temperature resulting in misguided combustor life estimates. In this study, non-gray radiation is compared to gray and black radiation by combining three-dimensional Monte Carlo Ray Tracing (MCRT) solution of non-gray flames in a model gas turbine combustor to one-dimensional energy balance within combustor liners. A recent large eddy simulation (LES) of a gas turbine combustor is analyzed, where both gray and non-gray models are exercised. A two-band spectral model is employed for the TBC, where a translucent band and an opaque band are identified. A line-by-line treatment for gas-phase radiation is adopted, and the incident radiative energy on the combustor wall is collected using the MCRT solver, where the fraction of radiative energy within the translucent band is collected and compared with those obtained from the blackbody assumption. The temperature distributions along the multi-layered combustor wall are computed and parametric comparison is conducted. The effects of the nongray flame radiation are more prominent at elevated pressures than at atmospheric pressure, leading to a difference of approximately 150 K in the prediction of peak temperature on the hot side of the TBC. The gray model is found to over-predict the TBC temperature at downstream locations, but under-predict the TBC temperature near the flame locations. The present study proposes a methodology to estimate the wall temperatures when radiation within the TBC is considered. Future work includes application of the methodology to more realistic combustors where both radiative fluxes and convective fluxes can be accurately captured.


Author(s):  
F. Wang ◽  
Y. Huang ◽  
T. Deng

Multi-injection combustor (MIC) could extend the steady working range of the whole combustor and reduce emissions therefore, so it is one of the Gas Turbine Combustor (GTC) design direction of future. The cold flow character of MIC is the basic work for MIC designers. Because of the low cost nowadays, the CFD method is a very suitable tool for it. Thus, firstly realizable k-epsilon turbulent model (RKE) and Reynolds stress turbulent model (RSM) were used to simulate the downstream flow field of a double radial swirl-cup amongst a simple tube, and the prediction results are compared with the experimental data which are gained by another researcher in Beihang University. The comparison between the experimental data and the CFD prediction results are shown that in most regions, the prediction results quite agree with the experimental data, and the max error of RKE model and RSM model is about 5% and 3% respectively. So the RKE model can be used for swirl-cup combustor simulation for its low computing cost. Then the RKE model is applied in a single swirl-cup gas turbine combustor and two kinds of multi-injection GTC flow field simulation. In the comparison between one single swirl-cup and nine arranged swirl-cups which all are in the same lining structure, each swirl-cup in MIC has a recirculation zone after its exit. Gradually, the recirculation zones mixed and united together in the downstream region. Finally, the recirculation zones structure turns to be similar to the structure in the single swirl-cup GTC after the primary combustion holes. In the other comparison between two kinds of lining structures which all are fixed with the same multi-injection head, the primary combustion holes affect flow field obviously. All the recirculation zones finished before the former primary combustion holes of the MIC without the primary combustion holes, and the separated recirculation zones form a new recirculation zone close to the primary holes for the MIC with primary holes. So the MIC design should combine with the real combustor lining structure to make a high performance for the whole combustor.


1970 ◽  
Vol 2 (1) ◽  
pp. 21-32 ◽  
Author(s):  
V Jyothishkumar ◽  
V Ganesan

Present work is concerned with the flow field analysis inside a marine annular gas turbine combustor under non-reacting as well as reacting flow conditions. Three-dimensional gas turbine combustor of 20-degree sector geometry has been created and meshed using the pre-processor GAMBIT. Flow through the combustor has been simulated using FLUENT code by solving the appropriate governing equations viz. Conservation of mass, momentum and energy. The RNG k-ε turbulence model is used for physical modeling. Combustion has been modeled using the Probability Density Function (PDF) approach. Total pressure loss has been studied for the isothermal as well as reacting flow case. For reacting flow overall pressure loss across the combustor has been evaluated. Keywords: Combustor, Recirculation region, Non-reacting flow. doi: 10.3329/jname.v2i1.2027 Journal of Naval Architecture and Marine Engineering 2(1)(2005) 21-32


Author(s):  
Clemens Olbricht ◽  
Johannes Janicka ◽  
Andreas Kempf

A progress variable approach based on premixed generated manifolds (PFGM) is applied to the LES of a model gas turbine combustor that features a lifted partially premixed flame in a complex flow field. The simulations were performed using two codes with different numerical bases from Imperial College (PsiPhi) and Darmstadt (FASTEST-ECL). Based on the same combustion model, the results from both codes show excellent agreement with each other, and good agreement with the experiments. The lifted flame dynamics, mixing, and product species composition including carbon monoxide concentration are all captured, underlining that both codes can be used to successfully simulate partially premixed model gas turbine combustors.


Sign in / Sign up

Export Citation Format

Share Document