Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors

Author(s):  
Semiu A. Gbadebo ◽  
Tom P. Hynes ◽  
Nicholas A. Cumpsty

Surface roughness on a stator blade was found to have a major effect on the three-dimensional (3D) separation at the hub of a single-stage low-speed axial compressor. The change in the separation with roughness worsened performance of the stage. A preliminary study was carried out to ascertain which part of the stator suction surface and at what operating condition the flow is most sensitive to roughness. The results show that stage performance is extremely sensitive to surface roughness around the leading edge and peak-suction regions, particularly for flow rates corresponding to design and lower values. Surface flow visualization and exit loss measurements show that the size of the separation, in terms of spanwise and chordwise extent, is increased with roughness present. Roughness produced the large 3D separation at design flow coefficient that is found for smooth blades nearer to stall. A simple model to simulate the effect of roughness was developed and, when included in a 3D Navier-Stokes calculation method, was shown to give good qualitative agreement with measurements.

2004 ◽  
Vol 126 (4) ◽  
pp. 455-463 ◽  
Author(s):  
Semiu A. Gbadebo ◽  
Tom P. Hynes ◽  
Nicholas A. Cumpsty

Surface roughness on a stator blade was found to have a major effect on the three-dimensional (3D) separation at the hub of a single-stage low-speed axial compressor. The change in the separation with roughness worsened performance of the stage. A preliminary study was carried out to ascertain which part of the stator suction surface and at what operating condition the flow is most sensitive to roughness. The results show that stage performance is extremely sensitive to surface roughness around the leading edge and peak-suction regions, particularly for flow rates corresponding to design and lower values. Surface flow visualization and exit loss measurements show that the size of the separation, in terms of spanwise and chordwise extent, is increased with roughness present. Roughness produced the large 3D separation at design flow coefficient that is found for smooth blades nearer to stall. A simple model to simulate the effect of roughness was developed and, when included in a 3D Navier–Stokes calculation method, was shown to give good qualitative agreement with measurements.


1989 ◽  
Vol 111 (2) ◽  
pp. 181-192 ◽  
Author(s):  
H. P. Hodson ◽  
J. S. Addison

A series of experimental investigations has been undertaken in a single-stage low-speed turbine. The measurements involved rotor blade surface flow visualization, surface-mounted hot-film anemometry, and exit pitot traverses. The effects of varying the flow coefficient and Reynolds number upon the performance of the rotor blade at midspan are described. At the design flow coefficient (φ = 0.495), the rotor pressure surface flow may be regarded as laminar, while on the suction surface, laminar flow gives way to unsteady stator wake-induced transition and then to turbulent flow. Over the range of Reynolds numbers investigated (1.8×105–3.3×105), the rotor midspan performance is dominated by the suction surface transition process; suction surface separation is prevented and the rotor midspan loss coefficient remains approximately constant throughout the range. At positive incidence, suction surface leading edge separation and transition are caused by a velocity overspeed. Reattachment occurs as the flow begins to accelerate toward the throat. The loss associated with the separation becomes significant with increasing incidence. At negative incidence, a velocity overspeed causes leading edge separation of the pressure side boundary layers. Reattachment generally occurs without full transition. The suction surface flow is virtually unaffected. Therefore, the rotor midspan profile loss remains unchanged from the zero incidence value until pressure side stall occurs.


Author(s):  
Wei Li ◽  
Hua Ouyang ◽  
Zhao-hui Du

To give insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically using a density-correction based, Reynolds-Averaged Navier-Stokes equations commercial CFD code. The 2nd stator clocking is applied over ten equal tangential positions. The results show that the harmonic blade number ratio is an important factor affecting the clocking effect. The clocking effect has a very small influence on the turbine efficiency in this investigation. The efficiency difference between the maximum and minimum configuration is nearly 0.1%. The maximum efficiency can be achieved when the 1st stator wake enters the 2nd stator passage near blade suction surface and its adjacent wake passes through the 2nd stator passage close to blade pressure surface. The minimum efficiency appears if the 1st stator wake impinges upon the leading edge of the 2nd stator and its adjacent wake of the 1st stator passed through the mid-channel in the 2nd stator.


1998 ◽  
Vol 120 (1) ◽  
pp. 20-27 ◽  
Author(s):  
R. J. Kind ◽  
P. J. Serjak ◽  
M. W. P. Abbott

Measurements of pressure distributions, profile losses, and flow deviation were carried out on a planar turbine cascade in incompressible flow to assess the effects of partial roughness coverage of the blade surfaces. Spanwise-oriented bands of roughness were placed at various locations on the suction and pressure surfaces of the blades. Roughness height, spacing between roughness elements, and band width were varied. A computational method based on the inviscid/viscous interaction approach was also developed; its predictions were in good agreement with the experimental results. This indicates that good predictions can be expected for a variety of cascade and roughness configurations from any two-dimensional analysis that couples an inviscid method with a suitable rough surface boundary-layer analysis. The work also suggests that incorporation of the rough wall skin-friction law into a three-dimensional Navier–Stokes code would enable good predictions of roughness effects in three-dimensional situations. Roughness was found to have little effect on static pressure distribution around the blades and on deviation angle, provided that it does not precipitate substantial flow separation. Roughness on the suction surface can cause large increases in profile losses; roughness height and location of the leading edge of the roughness band are particularly important. Loss increments due to pressure-surface roughness are much smaller than those due to similar roughness on the suction surface.


1996 ◽  
Vol 118 (2) ◽  
pp. 285-291 ◽  
Author(s):  
Chuichi Arakawa ◽  
Yi Qian ◽  
Takashi Kubota

A three-dimensional Navier-Stokes code with pseudo-compressibility, an implicit formulation of finite difference, and a k – ε two-equation turbulence model has been developed for the Francis hydraulic runner. The viscous flow in the rotating field can be simulated well in the design flow operating condition as well as in the off-design conditions in which a strong vortex occurs due to the separation near the leading edge. Because the code employs an implicit algorithm and a wall function near the wall, it does not require a large CPU time. It can therefore be used on a small computer such as the desk-top workstation, and is available for use as a design tool. The same kind of algorithm that is used for compressible flows has been found to be appropriate for the simulation of complex incompressible flows in the field of turbomachinery.


1995 ◽  
Vol 117 (4) ◽  
pp. 491-505 ◽  
Author(s):  
K. L. Suder ◽  
R. V. Chima ◽  
A. J. Strazisar ◽  
W. B. Roberts

The performance deterioration of a high-speed axial compressor rotor due to surface roughness and airfoil thickness variations is reported. A 0.025 mm (0.001 in.) thick rough coating with a surface finish of 2.54–3.18 rms μm (100–125 rms μin.) is applied to the pressure and suction surface of the rotor blades. Coating both surfaces increases the leading edge thickness by 10 percent at the hub and 20 percent at the tip. Application of this coating results in a loss in efficiency of 6 points and a 9 percent reduction in the pressure ratio across the rotor at an operating condition near the design point. To separate the effects of thickness and roughness, a smooth coating of equal thickness is also applied to the blade. The smooth coating surface finish is 0.254–0.508 rms μm (10–20 rms μin.), compared to the bare metal blade surface finish of 0.508 rms pm (20 rms μin.). The smooth coating results in approximately half of the performance deterioration found from the rough coating. Both coatings are then applied to different portions of the blade surface to determine which portions of the airfoil are most sensitive to thickness/roughness variations. Aerodynamic performance measurements are presented for a number of coating configurations at 60, 80, and 100 percent of design speed. The results indicate that thickness/roughness over the first 2 percent of blade chord accounts for virtually all of the observed performance degradation for the smooth coating, compared to about 70 percent of the observed performance degradation for the rough coating. The performance deterioration is investigated in more detail at design speed using laser anemometer measurements as well as predictions generated by a quasi-three-dimensional Navier–Stokes flow solver, which includes a surface roughness model. Measurements and analysis are performed on the baseline blade and the full-coverage smooth and rough coatings. The results indicate that adding roughness at the blade leading edge causes a thickening of the blade boundary layers. The interaction between the rotor passage shock and the thickened suction surface boundary layer then results in an increase in blockage, which reduces the diffusion level in the rear half of the blade passage, thus reducing the aerodynamic performance of the rotor.


2007 ◽  
Vol 2007 ◽  
pp. 1-8 ◽  
Author(s):  
K. W. Cheah ◽  
T. S. Lee ◽  
S. H. Winoto ◽  
Z. M. Zhao

The current investigation is aimed to simulate the complex internal flow in a centrifugal pump impeller with six twisted blades by using a three-dimensional Navier-Stokes code with a standardk-εtwo-equation turbulence model. Different flow rates were specified at inlet boundary to predict the characteristics of the pump. A detailed analysis of the results at design load,Qdesign, and off-design conditions, Q = 0.43Qdesignand Q = 1.45Qdesign, is presented. From the numerical simulation, it shows that the impeller passage flow at design point is quite smooth and follows the curvature of the blade. However, flow separation is observed at the leading edge due to nontangential inflow condition. The flow pattern changed significantly inside the volute as well, with double vortical flow structures formed at cutwater and slowly evolved into a single vortical structure at the volute diffuser. For the pressure distribution, the pressure increases gradually along streamwise direction in the impeller passages. When the centrifugal pump is operating under off-design flow rate condition, unsteady flow developed in the impeller passage and the volute casing.


Author(s):  
Choon-Man Jang ◽  
Abudus Samad ◽  
Kwang-Yong Kim

Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using the response surface method and three-dimensional Navier-Stokes analysis. The three design variables, blade sweep, lean and skew, are introduced to optimize the three-dimensional stacking line of the rotor blade. The objective function of the shape optimization is adiabatic efficiency. Throughout the shape optimization of the rotor, the adiabatic efficiency is increased by reducing the hub corner and tip losses. Separation line due to the interference between a passage shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one. Among the three design variables, the blade skew is most effective to increase the adiabatic efficiency in the compressor rotor.


1988 ◽  
Vol 110 (4) ◽  
pp. 434-440 ◽  
Author(s):  
V. Cyrus

A detailed investigation of the three-dimensional flow was carried out in a low-speed rear axial compressor stage with an aspect ratio of 1. Experimental data were obtained for both an inlet velocity profile with thin endwall boundary layer thickness and a distorted inlet velocity profile with a high turbulence intensity level. The distortion was produced by a specially designed screen. The flow mechanism in the rotor and stator blade rows is analyzed for these two velocity profiles at the design flow coefficient.


Sign in / Sign up

Export Citation Format

Share Document