scholarly journals Numerical Flow Simulation in a Centrifugal Pump at Design and Off-Design Conditions

2007 ◽  
Vol 2007 ◽  
pp. 1-8 ◽  
Author(s):  
K. W. Cheah ◽  
T. S. Lee ◽  
S. H. Winoto ◽  
Z. M. Zhao

The current investigation is aimed to simulate the complex internal flow in a centrifugal pump impeller with six twisted blades by using a three-dimensional Navier-Stokes code with a standardk-εtwo-equation turbulence model. Different flow rates were specified at inlet boundary to predict the characteristics of the pump. A detailed analysis of the results at design load,Qdesign, and off-design conditions, Q = 0.43Qdesignand Q = 1.45Qdesign, is presented. From the numerical simulation, it shows that the impeller passage flow at design point is quite smooth and follows the curvature of the blade. However, flow separation is observed at the leading edge due to nontangential inflow condition. The flow pattern changed significantly inside the volute as well, with double vortical flow structures formed at cutwater and slowly evolved into a single vortical structure at the volute diffuser. For the pressure distribution, the pressure increases gradually along streamwise direction in the impeller passages. When the centrifugal pump is operating under off-design flow rate condition, unsteady flow developed in the impeller passage and the volute casing.

1996 ◽  
Vol 118 (2) ◽  
pp. 285-291 ◽  
Author(s):  
Chuichi Arakawa ◽  
Yi Qian ◽  
Takashi Kubota

A three-dimensional Navier-Stokes code with pseudo-compressibility, an implicit formulation of finite difference, and a k – ε two-equation turbulence model has been developed for the Francis hydraulic runner. The viscous flow in the rotating field can be simulated well in the design flow operating condition as well as in the off-design conditions in which a strong vortex occurs due to the separation near the leading edge. Because the code employs an implicit algorithm and a wall function near the wall, it does not require a large CPU time. It can therefore be used on a small computer such as the desk-top workstation, and is available for use as a design tool. The same kind of algorithm that is used for compressible flows has been found to be appropriate for the simulation of complex incompressible flows in the field of turbomachinery.


2011 ◽  
Vol 317-319 ◽  
pp. 789-793
Author(s):  
Xiao Feng Shang ◽  
Liang Tong ◽  
Zhi Jian Wang

The three-Dimensional model of 40BZ6-15 centrifugal pump is built by the Solidworks software. This paper employs three-D Navier-Stokes equation and standard equation, and uses MRF and STMPLE algorithm to simulate the internal flowing of the 40BZ6 centrifugal pump. The velocity field and pressure field are gained. Through a further analysis, the rule of the internal flow of the centrifugal pump is unveiled, and then the simulative results are compared with the experimental ones, which can provide the base for the further improvement of the centrifugal pump.


Author(s):  
Sayed Ahmed Imran Bellary ◽  
Abdus Samad

Exit blade angle and impeller surface roughness has a significant effect on the performance of a centrifugal pump impeller handling different viscosity fluids. In this paper, a three-dimensional flow simulation using Reynolds averaged Navier Stokes (RANS) equations for the performance analysis of the impeller is reported. The analysis using water and viscous liquids has been accomplished for different flow conditions, exit blade angle and roughness values. Standard k-ε two equation model is used for the turbulent closure of steady incompressible flow. The investigation shows that the blade exit angle has influence on the head, shaft power and efficiency of the impeller for different liquids. Rise in head, increase in shaft power and decrease in hydraulic efficiency have been observed with increasing roughness.


2013 ◽  
Vol 694-697 ◽  
pp. 56-60
Author(s):  
Yue Jun Ma ◽  
Ji Tao Zhao ◽  
Yu Min Yang

In the paper, on the basis of three-dimensional Reynolds-averaged Navier-Stokes equations and the RNG κ-ε turbulence model, adopting Three-dimensional unstructured grid and pressure connection the implicit correction SIMPLEC algorithm, and using MRF model which is supported by Fluent, this paper carries out numerical simulation of the internal flow of the centrifugal pump in different operation points. According to the results of numerical simulation, this paper analyzes the bad flow phenomena of the centrifugal pump, and puts forward suggests about configuration perfected of the centrifugal pump. In addition, this paper is also predicted the experimental value of the centrifugal pump performance, which is corresponding well with the measured value.


1997 ◽  
Vol 119 (1) ◽  
pp. 45-51 ◽  
Author(s):  
E.-B. Shim ◽  
K.-S. Chang

Laminar vortical flow around a fully opened Bjo¨rk–Shiley valve in an aorta is obtained by solving the three-dimensional incompressible Navier–Stokes equations. Used is a noniterative implicit finite-element Navier–Stokes code developed by the authors, which makes use of the well-known finite difference algorithm PISO. The code utilizes segregated formulation and efficient iterative matrix solvers such as PCGS and ICCG. Computational results show that the three-dimensional vortical flow is recirculating with large shear in the sinus region of the valve chamber. Passing through the valve, the flow is split into major upper and lower jet flows. The spiral vortices generated by the disk are advected in the wake and attenuated rapidly downstream by diffusion. It is shown also that the shear stress becomes maximum near the leading edge of the disk valve.


Author(s):  
Yiyun Wang ◽  
Ji Pei ◽  
Shouqi Yuan ◽  
Wenjie Wang

Two-stage split case centrifugal pumps play an important role in large flow rate and high lift water transfer situations. To investigate the influence of baffles in between stages on the performance and internal flow characteristics, the unsteady simulations for the prototype pump were carried out by solving the three-dimensional Reynolds-averaged Navier-Stokes equations with a shear stress transport (SST) turbulence model. The structured grids were generated for the whole flow passage. The calculated performance results were verified by the experimental measurements. The entropy production method based on numerical simulation was applied to analyze the distribution and mechanism of flow losses. The results show that the turbulence dissipation is the dominant flow loss, and the viscous dissipation can be neglected. The baffles can reduce the turbulence dissipation power obviously and can improve the hydraulic efficiency by maximum 5%, especially under QBEP and over-load conditions. The baffles have the greatest effect on the hydraulic losses in the double suction impeller., because they change the flow characteristics in the channels between the first stage impeller and the double suction impeller, affecting the inflow condition dramatically for the impeller. The study can give a reference to optimize the design of the two-stage split case centrifugal pump for high efficiency.


2004 ◽  
Vol 126 (4) ◽  
pp. 455-463 ◽  
Author(s):  
Semiu A. Gbadebo ◽  
Tom P. Hynes ◽  
Nicholas A. Cumpsty

Surface roughness on a stator blade was found to have a major effect on the three-dimensional (3D) separation at the hub of a single-stage low-speed axial compressor. The change in the separation with roughness worsened performance of the stage. A preliminary study was carried out to ascertain which part of the stator suction surface and at what operating condition the flow is most sensitive to roughness. The results show that stage performance is extremely sensitive to surface roughness around the leading edge and peak-suction regions, particularly for flow rates corresponding to design and lower values. Surface flow visualization and exit loss measurements show that the size of the separation, in terms of spanwise and chordwise extent, is increased with roughness present. Roughness produced the large 3D separation at design flow coefficient that is found for smooth blades nearer to stall. A simple model to simulate the effect of roughness was developed and, when included in a 3D Navier–Stokes calculation method, was shown to give good qualitative agreement with measurements.


Author(s):  
H. Tug˘rul Tınaztepe ◽  
Ahmet S¸. U¨c¸er ◽  
I˙. Sinan Akamandor

A three-dimensional compressible full Navier-Stokes solver is developed for the analysis of the flow field inside turbomachinary cascades. The solver uses an explicit second order accurate (cell-vertex) finite volume Lax-Wendroff scheme over hexahedral cells. The viscous and heat conduction terms are discretized in conservative form at the cell center. Second and fourth order numerical smoothing terms are added with local scaling factors. Eddy viscosity is calculated by the Baldwin-Lomax model and is adapted to the pointered cell based algorithm. Turbulent viscosity is blended by inverse distance square weighting functions near corners. Characteristic boundary conditions are used. A computational analysis has been carried out to present the capability of the solver in capturing secondary velocity patterns, flow angles and total pressure loss distributions inside a linear high turning turbine cascade. A controlled diffusion compressor cascade at high incidence has been analyzed. Main features of the flow field in this compressor cascade were resolved (secondary and end wall flows and leading edge laminar separation bubble) as in the experimental data. The main aim of the work is to demonstrate the performance of the code in capturing the details of the complicated flow fields using grids that can be regarded as coarse.


Author(s):  
Peng Yan ◽  
Peng Wu ◽  
Dazhuan Wu

In this study, a double volute centrifugal pump of relative low efficiency and high vibration was redesigned with the aid of unsteady CFD analyses. The local Euler head distribution (LEHD) representing the energy growth from the blade leading edge to trailing edge on s1 stream surface in a viscous flow field was introduced to evaluate the flow on s1 stream surfaces from hub to shroud. To investigate the unsteady internal flow of the centrifugal pump, the unsteady Reynolds-averaged Navier-Stokes equations (URANS) were solved with realizable k-ε turbulence model using the CFD code FLUENT. The impeller was redesigned with the same outlet diameter as prototype pump. A two-step-form LEHD was recommended to suppress flow separation and secondary flow encountered in the prototype impeller to improve the efficiency. The splitter was added to improve the hydraulic performance and reduce unsteady radial forces. The original double volute was substituted by a newly designed single volute. The hydraulic efficiency of the redesigned centrifugal pump is 89.2%, 3.2% higher than the prototype pump. The pressure fluctuation in volute is significantly reduced and the mean and max values of unsteady radial force are only 30% and 26.5% of the prototype pump.


2016 ◽  
Vol 66 (6) ◽  
pp. 624 ◽  
Author(s):  
Anand Bhandarkar ◽  
Souraseni Basu ◽  
P. Manna ◽  
Debasis Chakraborty

<p>Combined external-internal flow simulation is required for the estimation of aerodynamic forces and moments of high speed air-breathing vehicle design. A wingless, X-tail configuration with asymmetrically placed rectangular air intake is numerically explored for which experimental data is available for different angles of attack. The asymmetrically placed air intakes and protrusions make the flow field highly three-dimensional and existing empirical relations are inadequate for preliminary design. Three dimensional Navier Stokes equations along with SST-kω turbulence model were solved with a commercial CFD solver to analyse the combined external and internal flow field of the configuration at different angles of attack. Estimated aerodynamic coefficients match well with experimental data and estimated drag coefficient are within 8.5 per cent of experimental data. Intake performance parameters were also evaluated for different angles of attack.</p>


Sign in / Sign up

Export Citation Format

Share Document