New Compressed Air Energy Storage Concept Improves the Profitability of Existing Simple Cycle, Combined Cycle, Wind Energy, and Landfill Gas Power Plants

Author(s):  
Michael Nakhamkin ◽  
Ronald H. Wolk ◽  
Sep van der Linden ◽  
Manu Patel

The proposed novel compressed air energy storage (CAES) concept is based on the utilization of capacity reserves of combustion turbine (CT) and combined cycle (CC) plants for the peak power generation, instead of development of highly customized and expensive turbo-machinery trains. These power reserves are particularly high during high ambient temperatures that correspond to typical summer peak power requirements. The stored compressed air will be injected into the CT after the compressor diffuser to supplement the reduced (due to high ambient temperature or altitudes) mass flow, through the turbine to the full potential (typically achieved at low ambient temperatures). The alternative concept, with stored compressed air, is humidification before injection into the CT, this reduces the auxiliary compressor size, the storage volume and associated costs. Power increase of up to 25% can be realized, coincidental with that which is typical for a CAES plant, significant reduction in the heat rate and emissions. The novel CAES concept reduces specific plant costs by a factor of two, which makes it particularly effective for integration with renewable energy sources, like wind energy plants and landfill gas (LFG) plants. The paper also presents an alternative small capacity CAES plant, which is based on using smaller man-made storage facilities (high pressure pipes and/or vessels), either underground or above ground that can be readily constructed at CT sites without specific geological requirements. The latter part of this paper specifically concentrates on integration of CAES with wind and landfill gas (LFG) plants.

Author(s):  
Sammy Houssainy ◽  
Reza Baghaei Lakeh ◽  
H. Pirouz Kavehpour

Human activity is overloading our atmosphere with carbon dioxide and other global warming emissions. These emissions trap heat, increase the planet’s temperature, and create significant health, environmental, and climate issues. Electricity production accounts for more than one-third of U.S. global warming emissions, with the majority generated by coal-fired power plants. These plants produce approximately 25 percent of total U.S. global warming emissions. In contrast, most renewable energy sources produce little to no global warming emissions. Unfortunately, generated electricity from renewable sources rarely provides immediate response to electrical demands, as the sources of generation do not deliver a regular supply easily adjustable to consumption needs. This has led to the emergence of storage as a crucial element in the management of energy, allowing energy to be released into the grid during peak hours and meet electrical demands. Compressed air energy storage can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. Most compressed air energy storage systems run at very high pressures, which possess inherent problems such as equipment failure, high cost, and inefficiency. This research aims to illustrate the potential of compressed air energy storage systems by illustrating two different discharge configurations and outlining key variables, which have a major impact on the performance of the storage system. Storage efficiency is a key factor to making renewable sources an independent form of sustainable energy. In this paper, a comprehensive thermodynamic analysis of a compressed air energy storage system is presented. Specifically, a detailed study of the first law of thermodynamics of the entire system is presented followed by a thorough analysis of the second law of thermodynamics of the complete system. Details of both discharge and charge cycles of the storage system are presented. The first and second law based efficiencies of the system are also presented along with parametric studies, which demonstrates the effects of various thermodynamic cycle variables on the total round-trip efficiency of compressed air energy storage systems.


Author(s):  
M. Nakhamkin ◽  
M. Patel ◽  
L. Andersson ◽  
P. Abitante ◽  
A. Cohn

This paper presents the results of a project targeted at developing cost effective power plant concept with integrated Coal Gasification System (CGS) and with Compressed Air Energy Storage (CAES) plant. The developed concepts, denoted as CGS/CAES, provide for continuous operation of CGS and the reheat turboexpander train which are high temperature components, thus improving their operation and extending life resource. A parametric thermodynamic analysis is performed for several CGS/CAES concepts differentiated by their turbomachinery parameters, CGS arrangements, operating cycles, and hours of daily generation. A qualitative cost estimate is made using a variety of sources including published EPRI reports and extensive in-house cost data. A technical and cost comparison is made to the Integrated Gasification Combined Cycle (IGCC) plant.


Author(s):  
Ahmed Darwish ◽  
Robert F. Boehm

It is being recognized that an increase in the electricity generated from central facilities of time-varying renewable energy sources will require some means of smoothing the variations with time. While thermal storage may be appropriate for solar trough and tower plants, additional approaches for storage might prove to be beneficial for other types of generation schemes. One approach to storage that has been examined to varying degrees over the years is Compressed Air Energy Storage (CAES). Compressed air can be supplied to large size tanks or underground caverns, and later this stored air can be used to generate power to shave the peak demand of electricity or maintain nearly uniform levels of power generation. The tank discharge process is time dependent on the temperature, pressure, and mass flow rate of the air leaving. Of course, this time dependency also affects the power output of the system. In the following analysis an attempt was given to determine: 1- an analysis of the charging and discharging processes; 2- a power-time relation during the discharge process; 3- an approximation for the size required for a certain energy generated (m3/MW h) as a function of the initial air pressure; 4- a relation between the discharge area and the time to stabilize the mass flow; and 5- a supplemental heat input is examined in the discharge process to maintain nearly constant discharge power. Using a thermodynamic analysis for the system the power-time history is found.


2020 ◽  
Vol 162 ◽  
pp. 01001
Author(s):  
Javier Menéndez ◽  
Falko Schmidt ◽  
Jorge Loredo

In the current energy context, intermittent and non-dispatchable renewable energy sources, such as wind and solar photovoltaic (generation does not necessarily correspond to demand), require flexible solutions to store energy. Energy storage systems (ESS) are able to balance the intermittent and volatile generation outputs of variable renewable energies (VRE). ESS provide ancillary services such as: frequency, primary and voltage control to the power grid. In order to fulfil the power system control, ESS can switch within seconds for different operation modes. Many times, ESS imply environment impacts on landscape and society. To solve this problem, disused underground spaces, such as closed mines, can be used as underground reservoir for energy storage plants. In this paper, a comparative analysis between underground pumped storage hydropower (UPSH), compressed air energy storage (CAES) and suspended weight gravity energy storage (SWGES) with suspended weights in abandoned mine shafts is carried out. Pumped storage hydropower (PSH) is the most mature concept and account for 99% of bulk storage capacity worldwide. The results obtained show that in UPSH and CAES plants, the amount of stored energy depends mainly on the underground reservoir capacity, while in SWGES plants depends on the depth of the mine shafts and the mass. The energy stored in a SWGES plant (3.81 MWh cycle-1 with 600 m of usable depth assuming 3,000 tonne suspended weight) is much lower than UPSH and CAES plants.


Sign in / Sign up

Export Citation Format

Share Document