Analysis of options in combining compressed air energy storage with a natural gas combined cycle

2018 ◽  
Vol 32 (7) ◽  
pp. 3453-3464 ◽  
Author(s):  
Ji Hun Jeong ◽  
Ji Hye Yi ◽  
Tong Seop Kim
Author(s):  
M. Nakhamkin ◽  
M. Patel ◽  
L. Andersson ◽  
P. Abitante ◽  
A. Cohn

This paper presents the results of a project targeted at developing cost effective power plant concept with integrated Coal Gasification System (CGS) and with Compressed Air Energy Storage (CAES) plant. The developed concepts, denoted as CGS/CAES, provide for continuous operation of CGS and the reheat turboexpander train which are high temperature components, thus improving their operation and extending life resource. A parametric thermodynamic analysis is performed for several CGS/CAES concepts differentiated by their turbomachinery parameters, CGS arrangements, operating cycles, and hours of daily generation. A qualitative cost estimate is made using a variety of sources including published EPRI reports and extensive in-house cost data. A technical and cost comparison is made to the Integrated Gasification Combined Cycle (IGCC) plant.


2019 ◽  
pp. 1-14 ◽  
Author(s):  
Amin Amirlatifi ◽  
Farshid Vahedifard ◽  
Maria Degtyareva ◽  
Richard N Turner ◽  
Brian Sullivan ◽  
...  

Author(s):  
Michael Nakhamkin ◽  
Ronald H. Wolk ◽  
Sep van der Linden ◽  
Manu Patel

The proposed novel compressed air energy storage (CAES) concept is based on the utilization of capacity reserves of combustion turbine (CT) and combined cycle (CC) plants for the peak power generation, instead of development of highly customized and expensive turbo-machinery trains. These power reserves are particularly high during high ambient temperatures that correspond to typical summer peak power requirements. The stored compressed air will be injected into the CT after the compressor diffuser to supplement the reduced (due to high ambient temperature or altitudes) mass flow, through the turbine to the full potential (typically achieved at low ambient temperatures). The alternative concept, with stored compressed air, is humidification before injection into the CT, this reduces the auxiliary compressor size, the storage volume and associated costs. Power increase of up to 25% can be realized, coincidental with that which is typical for a CAES plant, significant reduction in the heat rate and emissions. The novel CAES concept reduces specific plant costs by a factor of two, which makes it particularly effective for integration with renewable energy sources, like wind energy plants and landfill gas (LFG) plants. The paper also presents an alternative small capacity CAES plant, which is based on using smaller man-made storage facilities (high pressure pipes and/or vessels), either underground or above ground that can be readily constructed at CT sites without specific geological requirements. The latter part of this paper specifically concentrates on integration of CAES with wind and landfill gas (LFG) plants.


Entropy ◽  
2014 ◽  
Vol 16 (6) ◽  
pp. 3103-3120 ◽  
Author(s):  
Wenyi Liu ◽  
Linzhi Liu ◽  
Luyao Zhou ◽  
Jian Huang ◽  
Yuwen Zhang ◽  
...  

Author(s):  
Shreyas M. Patel ◽  
Paul T. Freeman ◽  
John R. Wagner

Non-renewable energy sources such as coal, oil, and natural gas are being consumed at a brisk pace while greenhouse gases contribute to atmospheric pollution. A global shift is underway toward the inclusion of renewable energy sources, such as solar and wind, for generating electrical and mechanical power. To meet this emerging demand, a solar based electrical microgrid study is underway at Clemson University. Solar energy is harvested from photovoltaic panels capable of producing 15 kW of DC power. Compressed air energy storage has been evaluated using the generated solar power to operate an electric motor driven piston compressor. The compressed air is then stored under pressure and supplied to a natural gas driven Capstone C30 MicroTurbine with attached electric power generator. The compressed air facilitates the turbine’s rotor-blade operated compression stage resulting in direct energy savings. A series of mathematical models have been developed. To evaluate the feasibility and energy efficiency improvements, the experimental and simulation results indicated that 127.8 watts of peak power was delivered at 17.5 Volts and 7.3 Amps from each solar panel. The average power generation over a 24-hour time period from 115 panels was 15 kW DC or 6 kW of AC power at 208/240 VAC and 25 Amps from the inverter. This electrical power could run a 5.2 kW reciprocating compressor for approximately 5 hours storing 1,108 kg of air at a 1.2 MPa pressure. A case study indicated that the microturbine, when operated without compressed air storage, consumed 11.2 kg of gaseous propane for 30 kW·hr of energy generation. In contrast, the microturbine operated in conjunction with solar supplied air storage could generate 50.8 kW·hr of electrical energy for a similar amount of fuel consumption. The study indicated an 8.1% efficiency improvement in energy generated by the system which utilized compressed air energy storage over the traditional approach.


Author(s):  
Barry E. Osterman-Burgess ◽  
D. Yogi Goswami ◽  
Elias K. Stefanakos

This paper focuses on the economics of integrating thermal energy storage into natural gas combined cycle power plants for improved operational and economic performance of the utility grid. Costs and fuel consumption are modeled based on a Florida electric utility’s hour-by-hour load data under two scenarios: 1) no storage, and 2) thermal storage attached to intermediate load, NGCC plants, displacing energy production from older, less efficient NGCT peaking units. Due to the nature of the power grid, several of the older units feature abnormally high fuel costs and abnormally low thermal efficiencies. By shifting load from the most expensive peaking units to more cost-effective combined cycles with a 204 MWhth storage system costing about $4 million, savings of more than $1 million per year can be realized while also reducing CO2 emissions by about 5000 metric tons per year. These savings represent an internal rate of returns of up to 23% over a 30-year lifetime, depending on the initial cost of the storage system.


Sign in / Sign up

Export Citation Format

Share Document