Turbofan Engine Robust H-∞ Dynamical Output Feedback Control Design Based on LMI Method

Author(s):  
Xi Wang ◽  
Daoliang Tan ◽  
Tiejun Zheng

This paper presents an approach to turbofan engine dynamical output feedback controller (DOFC) design in the framework of LMI (Linear Matrix Inequality)-based H∞ control. In combination with loop shaping and internal model principle, the linear state space model of a turbofan engine is converted into that of some augmented plant, which is used to establish the LMI formulations of the standard H∞ control problem with respect to this augmented plant. Furthermore, by solving optimal H∞ controller for the augmented plant, we indirectly obtain the H∞ DOFC of turbofan engine which successfully achieves the tracking of reference instructions and effective constraints on control inputs. This design method is applied to the H∞ DOFC design for the linear models of an advanced multivariate turbofan engine. The obtained H∞ DOFC is only in control of the steady state of this turbofan engine. Simulation results from the linear and nonlinear models of this turbofan engine show that the resulting controller has such properties as good tracking performance, strong disturbance rejection, and satisfying robustness.

Author(s):  
Mounir Hammouche ◽  
Philippe Lutz ◽  
Micky Rakotondrabe

The problem of robust and optimal output feedback design for interval state-space systems is addressed in this paper. Indeed, an algorithm based on set inversion via interval analysis (SIVIA) combined with interval eigenvalues computation and eigenvalues clustering techniques is proposed to seek for a set of robust gains. This recursive SIVIA-based algorithm allows to approximate with subpaving the set solutions [K] that satisfy the inclusion of the eigenvalues of the closed-loop system in a desired region in the complex plane. Moreover, the LQ tracker design is employed to find from the set solutions [K] the optimal solution that minimizes the inputs/outputs energy and ensures the best behaviors of the closed-loop system. Finally, the effectiveness of the algorithm is illustrated by a real experimentation on a piezoelectric tube actuator.


Author(s):  
Mickael Rodrigues ◽  
Didier Theilliol ◽  
Samir Aberkane ◽  
Dominique Sauter

Fault Tolerant Control Design For Polytopic LPV SystemsThis paper deals with a Fault Tolerant Control (FTC) strategy for polytopic Linear Parameter Varying (LPV) systems. The main contribution consists in the design of a Static Output Feedback (SOF) dedicated to such systems in the presence of multiple actuator faults/failures. The controllers are synthesized through Linear Matrix Inequalities (LMIs) in both fault-free and faulty cases in order to preserve the system closed-loop stability. Hence, this paper provides a new sufficient (but not necessary) condition for the solvability of the stabilizing output feedback control problem. An example illustrates the effectiveness and performances of the proposed FTC method.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Wenwen Cheng ◽  
Quanxin Zhu ◽  
Zhangsong Yao

We address the problem of the globally asymptotic stability for a class of stochastic nonlinear systems with the output feedback control. By using the backstepping design method, a novel dynamic output feedback controller is designed to ensure that the stochastic nonlinear closed-loop system is globally asymptotically stable in probability. Our way is different from the traditional mathematical induction method. Indeed, we develop a new method to study the globally asymptotic stability by introducing a series of specific inequalities. Moreover, an example and its simulations are given to illustrate the theoretical result.


Author(s):  
Grace S. Deaecto ◽  
José C. Geromel

This paper deals with the output feedback H∞ control design problem for continuous-time switched linear systems. More specifically, the main goal is to design a switching rule together with a dynamic full order linear controller to satisfy a prespecified H∞ level defined by the L2 gain from the input to the output signal. Initially, the state feedback version of this problem is solved in order to put in evidence the main difficulties we have to face toward the solution of the output feedback control design problem. The results reported in this paper are based on the so called Lyapunov–Metzler inequalities, which express a sufficient condition for switched linear systems global stability. The solution of the previously mentioned output feedback control design problem through a linear matrix inequality based method is the main contribution of the present paper. An academic example borrowed from literature is used for illustration.


Author(s):  
Mansour Karkoub ◽  
Tzu Sung Wu

In this paper, the design problem of delayed output feedback control scheme using two-layer interval fuzzy observers for a class of nonlinear systems with state and output delays is investigated. The Takagi-Sugeno type fuzzy linear model with an on-line update law is used to approximate the nonlinear system. Based on the fuzzy model, a two-layer interval fuzzy observer is used to reconstruct the system states according to equal interval output time delay slices. Subsequently, a delayed output feedback adaptive fuzzy controller is developed to override the nonlinearities, time delays, and external disturbances such that the H∞ tracking performance is achieved. The linguistic information is developped by setting the membership functions of the fuzzy logic system and the adaptation parameters to estimate the model uncertainties directly for using linear analytical results instead of estimating nonlinear system functions. The filtered tracking error dynamics are designed to satisfy the Strictly Positive Realness (SPR) condition. Based on the Lyapunov stability criterion and linear matrix inequalities (LMIs), some sufficient conditions are derived so that all states of the system are uniformly ultimately bounded and the effect of the external disturbances on the tracking error can be attenuated to any prescribed level and consequently an H∞ tracking control is achieved. Finally, a numerical example of a two-link robot manipulator is given to illustrate the effectiveness of the proposed control scheme.


2016 ◽  
Vol 28 (5) ◽  
pp. 640-645
Author(s):  
Takao Sato ◽  
◽  
Hironobu Sakaguchi ◽  
Nozomu Araki ◽  
Yasuo Konishi

[abstFig src='/00280005/04.jpg' width='250' text='Multirate output feedback control' ] In the new design method we propose for a multirate output feedback control system, the hold interval of control input is longer than the sampling interval of plant output. In this system, unknown state variables are calculated using control input and plant output without observers. The multirate output feedback control system has been extended by introducing new design parameters that are designed independent of the calculation of the state variable. To our knowledge, however, no systematic design scheme has ever been proposed for design parameters in this case. In this study, quantization error is dealt with statistically and design parameters are decided to minimize quantization error.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sung Hyun Kim

This paper investigates the observer-basedH∞tracking problem of networked output-feedback control systems with consideration of data transmission delays, data-packet dropouts, and sampling effects. Different from other approaches, this paper offers a single-step procedure to handle nonconvex terms that appear in the process of designing observer-based output-feedback control, and then establishes a set of linear matrix inequality conditions for the solvability of the tracking problem. Finally, two numerical examples are given to illustrate the effectiveness of our result.


Author(s):  
H R Karimi ◽  
M Zapateiro ◽  
N Luo

A mixed H2/ H∞ output-feedback control design methodology for vibration reduction of base-isolated building structures modelled in the form of second-order linear systems is presented. Sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities. A controller that guarantees asymptotic stability and a mixed H2/ H∞ performance for the closed-loop system of the structure is developed, based on a Lyapunov function. The performance of the controller is evaluated by means of simulations in MATLAB/Simulink.


Sign in / Sign up

Export Citation Format

Share Document