Behavior of Tip Leakage Flow in an Axial Flow Compressor Rotor

Author(s):  
Yanhui Wu ◽  
Wuli Chu ◽  
Xingen Lu ◽  
Junqiang Zhu

The current paper reports on investigations with an aim to advance the understanding of the flow field near the casing of a small-scale high-speed axial flow compressor rotor. Steady three dimensional viscous flow calculations are applied to obtain flow fields at various operating conditions. To demonstrate the validity of the computation, the numerical results are first compared with available measured data. Then, the numerically obtained flow fields are analyzed to identify the behavior of tip leakage flow, and the mechanism of blockage generation arising from flow interactions between the tip clearance flow, the blade/casing wall boundary layers, and non-uniform main flow. The current investigation indicates that the “breakdown” of the tip leakage vortex occurs inside the rotor passage at the near stall condition. The vortex “breakdown” results in the low-energy fluid accumulating on the casing wall spreads out remarkably, which causes a sudden growth of the casing wall boundary layer having a large blockage effect. A low-velocity region develops along the tip clearance vortex at the near stall condition due to the vortex “breakdown”. As the mass flow rate is further decreased, this area builds up rapidly and moves upstream. This area prevents incoming flow from passing through the pressure side of the passage and forces the tip leakage flow to spill into the adjacent blade passage from the pressure side at the leading edge. It is found that the tip leakage flow exerts little influence on the development of the blade suction surface boundary layer even at the near stall condition.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4168
Author(s):  
Botao Zhang ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Bo Liu

To explain the effect of tip leakage flow on the performance of an axial-flow transonic compressor, the compressors with different rotor tip clearances were studied numerically. The results show that as the rotor tip clearance increases, the leakage flow intensity is increased, the shock wave position is moved backward, and the interaction between the tip leakage vortex and shock wave is intensified, while that between the boundary layer and shock wave is weakened. Most of all, the stall mechanisms of the compressors with varying rotor tip clearances are different. The clearance leakage flow is the main cause of the rotating stall under large rotor tip clearance. However, the stall form for the compressor with half of the designed tip clearance is caused by the joint action of the rotor tip stall caused by the leakage flow spillage at the blade leading edge and the whole blade span stall caused by the separation of the boundary layer of the rotor and the stator passage. Within the investigated varied range, when the rotor tip clearance size is half of the design, the compressor performance is improved best, and the peak efficiency and stall margin are increased by 0.2% and 3.5%, respectively.


Author(s):  
Xiaochen Mao ◽  
Bo Liu ◽  
Hang Zhao

This paper presents the studies performed to better understand the effects of increased tip clearance size on the unsteady flow behaviors and overall performance under the rotor–rotor interaction environment in a counter-rotating axial flow compressor. The investigation method is based on the three-dimensional unsteady Reynolds-averaged Navier–Stokes simulations. The results show that the intensified tip leakage flow in front rotor (R1) caused by the increased tip clearance size will lead to the growth of incoming incidence angle near the tip of the rear rotor (R2). The increasing of double leakage flow range plays a significant role in the sensitivity of the efficiency to tip clearance size and its extent is enlarged gradually with the increase of tip clearance size. As the tip clearance size is increased to 1.5τ (τ represents the designed tip clearance size) from 0.5τ, the results of the fast Fourier transform for the static pressure near blade tip show that two other new fluctuating frequency components appear due to the happening of tip leakage flow self-unsteadiness in R1 and R2, respectively. Additionally, the fluctuating strength near the tip in R2 is significantly increased. However, both the overall fluctuation in R1 caused by the potential effect from downstream and the oscillation in the hub corner on the pressure side of R2 are decreased obviously. The relative inflow angle tends to increase when the incoming wakes and tip leakage flow from R1 encounter the blade leading edge of R2, which leads to the result that the trajectory of tip leakage flow is shifted more upstream.


1998 ◽  
Vol 120 (4) ◽  
pp. 683-692 ◽  
Author(s):  
M. Furukawa ◽  
K. Saiki ◽  
K. Nagayoshi ◽  
M. Kuroumaru ◽  
M. Inoue

Experimental and computational results of tip leakage flow fields in a diagonal flow rotor at the design flow rate are compared with those in an axial flow rotor. In the diagonal flow rotor, the casing and hub walls are inclined at 25 deg and 45 deg, respectively, to the axis of rotation, and the blade has airfoil sections with almost the same tip solidity as that of the axial flow rotor. It is found out that “breakdown” of the tip leakage vortex occurs at the aft part of the passage in the diagonal flow rotor. The “vortex breakdown” causes significant changes in the nature of the tip leakage vortex: disappearance of the vortex core, large expansion of the vortex, and appearance of low relative velocity region in the vortex. These changes result in a behavior of the tip leakage flow that is substantially different from that in the axial flow rotor: no rolling-up of the leakage vortex downstream of the rotor, disappearance of the casing pressure trough at the aft part of the rotor passage, large spread of the low-energy fluid due to the leakage flow, much larger growth of the casing wall boundary layer, and considerable increase in the absolute tangential velocity in the casing wall boundary layer. The vortex breakdown influences the overall performance, also: large reduction of efficiency with the tip clearance, and low level of noise.


2013 ◽  
Vol 2013 ◽  
pp. 1-22
Author(s):  
Mahesh Varpe ◽  
A. M. Pradeep

This paper explores the effect of inlet shear flow on the tip leakage flow in an axial flow compressor cascade. A flow with a high shear rate is generated in the test section of an open circuit cascade wind tunnel by using a combination of screens with a prescribed solidity. It is observed that a stable shear flow of shear rate 1.33 is possible and has a gradual decay rate until 15 times the height of the shear flow generator downstream. The computational results obtained agree well with the available experimental data on the baseline configuration. The detailed numerical analysis shows that the tip clearance improves the blade loading near the tip through the promotion of favorable incidence by the tip leakage flow. The tip clearance shifts the centre of pressure on the blade surface towards the tip. It, however, has no effect on the distribution of end wall loss and deviation angle along the span up to 60% from the hub. In the presence of a shear inflow, the end wall effects are considerable. On the other hand, with a shear inflow, the effects of tip leakage flow are observed to be partly suppressed. The shear flow reduces the tip leakage losses substantially in terms of kinetic energy associated with it.


Author(s):  
Pradyumna Kodancha ◽  
Pramod Salunkhe

Abstract Numerical investigations are carried out in a single-stage subsonic axial flow compressor to unravel the influence of blade tip surface roughness on the tip leakage flow characteristics and hence the compressor performance. The studies were carried out at different tip clearance of 0.38?, 0.77?, 1.15? and 1.54? and blade tip surface roughness of 0.31? and 0.62?. The tip clearance of 0.38? with blade tip surface roughness of 0.62? resulted in the highest stall margin and pressure rise of 20.3% and 4.3%, respectively. The compressor blade loading was found to be improved by 5.9% after incorporating the blade tip surface roughness. The iso-surfaces of vorticity contour plotted using the Q-criterion showed the reduction in strength of the tip leakage vortex. The tip leakage trajectory was found to be shifted towards the suction surface of the blade for the blade tip with surface roughness. This positive alteration in the tip leakage flow structure led to the improved performance for the blade tip with surface roughness.


Author(s):  
Xingen Lu ◽  
Junqiang Zhu ◽  
Wuli Chu ◽  
Rugen Wang

This paper investigates the flow field at the tip region of compressor rotor. In particular, the effect of stepped tip gaps on the performance and flowfield of an axial-flow compressor rotor was reviewed using both experimental and computational methods. An axial compressor rotor with no inlet guide vanes was tested under subsonic condition. A parametric study of clearance levels and step profiles was performed using eight different casing geometries. This study was aimed at comparing compressor performance in specified configurations. The experimental results showed that the inclusion of stepped tip gaps with the small clearance level gave increased pressure ratio, efficiency, and stall margin throughout the mass flow range at both speeds. However, when using medium and large clearance level, the benefits of stepped tip gaps were not noticed for all rotor operating conditions if compared with the baseline case. Steady-state Navier-Stokes analyses were performed for cases involving small clearance level and stepped tip gap geometries. They highlighted the mechanisms associated with performance improvement. The numerical procedure correctly predicted the overall effects of stepped tip gaps. Detailed numerical simulation results showed that the interaction between the stepped groove flow and blade passage flow could entrain the blockage produced by upstream tip leakage flow into the tip gap of adjacent blades of the compressor rotor. It is through this process that stepped tip gaps can help dissipating blockage that was caused by upstream tip leakage flow. Thus the path and extent of the blockage in the tip region is altered to increase the passage throughflow area and so, the rotor performance can be improved.


Author(s):  
G. Perrin ◽  
F. Leboeuf ◽  
W. N. Dawes

A three-dimensional computation has been performed for a supersonic axial flow compressor rotor by solving the Navier-Stokes equations. The results of the computation are used to analyse the tip leakage flow in more detail. As well as the global behaviour of the tip leakage vortex, the analysis focuses on the origins of this vortex. It is shown that the main source of its vorticity is the shear layer at the tip of the blade associated with the shedding of the blade loading. A separation occurs, with respect to the axial velocity component, as the jet leakage flow, crossing the clearance gap, encounters the upstream incoming flow. Although the entropy increase of this separation is low, it has a strong effect on the mixing around the leakage vortex. Overall, for this compressor and the choosen operating point, the tip leakage effects are localised near the tip wall and suction side of the blade.


Author(s):  
Yuping Qian ◽  
Yuzhi Jin ◽  
Weilin Zhuge ◽  
Yangjun Zhang ◽  
Yajun Lu

A linear to nonlinear transition during the spike stall process of an axial flow compressor rotor is presented. Recently, some researchers thought that spike stall inception is directly induced by the tip leakage flow. However, the authors utilized unsteady full annular simulations and found that a second-order disturbance appeared two revolutions before the breakdown of the tip leakage flow in an axial rotor, associate with spike stall inception while the tip leakage flow is still stable. This second-order disturbance grew rapidly in the next two revolutions and the process was unlike the low order disturbance development in modal stall inception. The response of the compression system was still linear in this process. The rapidly developing second-order disturbance made the tip leakage flow unstable, leading to the start of spike stall inception. The response of the compression system became nonlinear in this process.


Author(s):  
Zhe Yang ◽  
Hanan Lu ◽  
Tianyu Pan ◽  
Qiushi Li

Abstract In a boundary layer ingesting (BLI) propulsion system, the fan is continuously exposed to inflow distortions. The distorted inflows lead to non-uniform loss distributions along the radial and circumferential directions. Since the rotor tip suffers from higher intensive distortion, the local loss increment is a major contributor to the BLI fan performance penalty. To explore the effects of distorted inflows on tip leakage flow evolutions and associated mechanisms for increased loss in a BLI fan, three-dimensional full-annulus unsteady simulations are conducted. Results show that about 54% of total additional losses due to distortion are formed in tip region and more than 80% of tip entropy generation is related to the tip leakage flow. The intensities of leakage vortex-shock interactions vary at different annulus locations. When the rotor moves into distorted region, the vortex-shock interaction is weaker than the undistorted locations due to attenuated leakage flow. At the locations where the rotor is moving out from distorted region, the vortex-shock interaction is notably enhanced because the front part of blade tip airfoil suffers a higher load, resulting in a rapid vortex core expansion and eventually vortex breakdown. The increase of flow blockage in the front section of blade tip passages at local circumferential positions leads to a corresponding rise of flow loss. The findings in this study highlight the impacts of tip leakage flow on aerodynamic loss of fan working under BLI inflow distortion and provide improved understandings of loss mechanisms in a BLI fan.


Sign in / Sign up

Export Citation Format

Share Document