local loss
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 59)

H-INDEX

15
(FIVE YEARS 4)

2022 ◽  
Author(s):  
zhu rongrong

Abstract Through the neural system damage and repair process of human brain, we can construct the complex deep learning and training of the repair process such as the damage of brain like high-dimensional flexible neural network system or the local loss of data, so as to prevent the dimensional disaster caused by the local loss of high-dimensional data. How to recover and extract feature information when the damaged neural system (flexible neural network) has amnesia or local loss of stored information. Information extraction generally exists in the distribution table of the generation sequence of the key group of the higher dimension or the lower dimension to find the core data stored in the brain. The generation sequence of key group exists in a hidden time tangent cluster. Brain like slice data processing runs on different levels, different dimensions, different tangent clusters and cotangent clusters. The key group in the brain can be regarded as the distribution table of memory fragments. Memory parsing has mirror reflection and is accompanied by the loss of local random data. In the compact compressed time tangent cluster, it freely switches to the high-dimensional information field, and the parsed key is buried in the information.


2021 ◽  
Author(s):  
zhu rongrong

Abstract Through the neural system damage and repair process of human brain, we can construct the complex deep learning and training of the repair process such as the damage of brain like high-dimensional flexible neural network system or the local loss of data, so as to prevent the dimensional disaster caused by the local loss of high-dimensional data. How to recover and extract feature information when the damaged neural system (flexible neural network) has amnesia or local loss of stored information. Information extraction generally exists in the distribution table of the generation sequence of the key group of the higher dimension or the lower dimension to find the core data stored in the brain. The generation sequence of key group exists in a hidden time tangent cluster. Brain like slice data processing runs on different levels, different dimensions, different tangent clusters and cotangent clusters. The key group in the brain can be regarded as the distribution table of memory fragments. Memory parsing has mirror reflection and is accompanied by the loss of local random data. In the compact compressed time tangent cluster, it freely switches to the high-dimensional information field, and the parsed key is buried in the information.


2021 ◽  
Author(s):  
zhu rongrong

Abstract Through the neural system damage and repair process of human brain, we can construct the complex deep learning and training of the repair process such as the damage of brain like high-dimensional flexible neural network system or the local loss of data, so as to prevent the dimensional disaster caused by the local loss of high-dimensional data. How to recover and extract feature information when the damaged neural system (flexible neural network) has amnesia or local loss of stored information. Information extraction generally exists in the distribution table of the generation sequence of the key group of the higher dimension or the lower dimension to find the core data stored in the brain. The generation sequence of key group exists in a hidden time tangent cluster. Brain like slice data processing runs on different levels, different dimensions, different tangent clusters and cotangent clusters. The key group in the brain can be regarded as the distribution table of memory fragments. Memory parsing has mirror reflection and is accompanied by the loss of local random data. In the compact compressed time tangent cluster, it freely switches to the high-dimensional information field, and the parsed key is buried in the information.


2021 ◽  
Author(s):  
Joshua Madin ◽  
Michael McWilliam ◽  
Kate Quigley ◽  
Line Bay ◽  
David Bellwood ◽  
...  

Humans have long sought to restore species but little attention has been directed at how best to do so for rich assemblages of foundation species that support ecosystems, like rainforests and coral reefs that are increasingly threatened by environmental change. We developed a two-part triage process for selecting optimized sets of species for restoration. We demonstrated this process using phenotypic traits and ecological characteristics for reef building corals found along the east coast of Australia. Without clear linkages between phenotypic traits and ecosystem functions, the first part of the triage hedges against function loss by ensuring an even spread of life history traits. The second part hedges against future species losses by weighting species based on characteristics that are known to increase their ecological persistence to current environmental pressures--abundance, species range and thermal bleaching tolerance--as well as their amenability to restoration methods. We identified sets of ecologically persistent and restorable species most likely to protect against functional loss by examining marginal returns in occupancy of phenotypic trait space per restored species. We also compared sets of species with those from the southern-most accretional reef as well as a coral restoration program to demonstrate how trait space occupancy is likely to protect against local loss of ecosystem function. Synthesis and applications. A quantitative approach to selecting sets of foundational species for restoration can inform decisions about ecosystem protection to guide and optimize future restoration efforts. The approach addresses the need to insure against unpredictable losses of ecosystem functions by investing in a wide range of phenotypes. Furthermore, the flexibility of the approach enables the functional goals of restoration to vary depending on environmental context, stakeholder values, and the spatial and temporal scales at which meaningful impacts can be achieved.


SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Il Lyong Om ◽  
Un Chol Han ◽  
Song Il Ryo ◽  
Chun Yong Kim ◽  
Yong Nam Sol

Summary Simplified and 3D models have been studied to predict the performance of progressing cavity pumps (PCPs). Simplified models were mainly made for metallic stator PCP performance. Their purpose was to represent the relationship between pump flow rate and differential pressure. Previous studies proposed to solve the system of mass conservation equations. In these studies, the geometry of the gap area was not clearly represented by neglecting the curvatures of stator and rotor. In addition, only frictional loss was considered, but local loss by gradual contraction or expansion of the gap area was not considered. In this study, we present a new analytical approach considering curvature and local loss. The depth of the gap area and local loss could be calculated analytically by a middle streamline and a curvature. On the basis of periodicity of distribution of cavities, simplified calculation for a slippage was possible without a system of mass conservation equations. Therefore, this model represents clearer geometry and a more simplified approach. The results show that this model shortens the calculating time and facilitates programing; in addition, the model validation is good in matching with experimental data.


2021 ◽  
Author(s):  
Dweepabiswa Bagchi ◽  
Ramesh Arumugam ◽  
V K Chandrasekar ◽  
D V Senthilkumar

Predation as an important trophic interaction of ecological communities controls the large-scale patterns of species distribution, population abundance and community structure. Numerous studies address that predation can mediate diversity and regulate the ecological community and food web stability through changes in the behaviour, morphology, development, and abundance of prey. Since predation has large effects on persistence and diversity, the local loss or removal of predation in a community can trigger a cascade of extinctions. In ecological theory, the effect of predation removal has been well studied in foodwebs, but it remains unclear in the case of a spatially distributed community connected by dispersal. In this study, the interaction between local and spatial processes is taken into account, we present how a predation turnoff in selective patches affects the stability and persistence of a metacommunity. Using a simple predator-prey metacommunity with a diffusive dispersal, we show the impact of predation on synchronized, asynchronized and source-sink dynamics. Our results reveal that predation turnoff in very few patches alters a perfectly synchronized oscillatory state into multicluster states consisting of various patterns. In a source-sink behaviour, predation turnoff in a source patch reduces the number of sink patches and changes the clusters. In general, predation turnoff in a finite number of patches increases the number of clusters through asynchronized (inhomogeneous) states, whereas predation turnoff in a larger number of patches can lead to the complete extinction of predators. Typically, there exists a critical number of patches below which the predation turnoff results in asynchronized states and above that predation turnoff leads to a synchronized state in prey population with complete extinction of predators. Further, our results identify the network configurations that exhibit a unique number of clusters. Moreover, prey density from the patches where predation is absent goes to a saturating state near the carrying capacity. Thus, this study stresses that predation turnoff in selective patches acts as a stabilizing mechanism that can promote metacommunity persistence.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Junchen Deng ◽  
Giacomo Assandri ◽  
Pallavi Chauhan ◽  
Ryo Futahashi ◽  
Andrea Galimberti ◽  
...  

Abstract Background Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conflicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct fitness benefits, and/or by manipulating its host reproduction to favour infected over uninfected females. Under sufficient selective advantage, the mitochondrial haplotype associated with the favoured maternally-inherited symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. Method The common bluetail damselfly (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism for genetics and genomic signatures of range expansion during climate change. Although there is accumulating data on the consequences of such expansion on the genetics of I. elegans, no study has screened for Wolbachia in the damselfly genus Ischnura. Here, we present the biogeographic variation in Wolbachia prevalence and penetrance across Europe and Japan (including samples from 17 populations), and from close relatives in the Mediterranean area (i.e. I. genei: Rambur, 1842; and I. saharensis: Aguesse, 1958). Results Our data reveal (a) multiple Wolbachia-strains, (b) potential transfer of the symbiont through hybridization, (c) higher infection rates at higher latitudes, and (d) reduced mitochondrial diversity in the north-west populations, indicative of hitchhiking associated with the selective sweep of the most common strain. We found low mitochondrial haplotype diversity in the Wolbachia-infected north-western European populations (Sweden, Scotland, the Netherlands, Belgium, France and Italy) of I. elegans, and, conversely, higher mitochondrial diversity in populations with low penetrance of Wolbachia (Ukraine, Greece, Montenegro and Cyprus). The timing of the selective sweep associated with infected lineages was estimated between 20,000 and 44,000 years before present, which is consistent with the end of the last glacial period about 20,000 years. Conclusions Our findings provide an example of how endosymbiont infections can shape spatial variation in their host evolutionary genetics during postglacial expansion. These results also challenge population genetic studies that do not consider the prevalence of symbionts in many insects, which we show can impact geographic patterns of mitochondrial genetic diversity.


Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 225
Author(s):  
Rang-Lin Fan ◽  
Yu-Fei Dou ◽  
Fu-Liang Ma

Active hydraulic mounts with an inertia track, decoupler membrane, and oscillating coil actuator (AHM-IT-DM-OCAs) have been studied extensively due their compact structure and large damping in the low-frequency band. This paper focuses on a comprehensive analysis of the active and passive dynamics and their fixed points in mid-low-frequency bands, which will be helpful for parameter identification. A unified lumped parameter mechanical model with two degrees-of-freedom is established. The inertia and damping forces of the decoupler/actuator mover may be neglected, and a nonlinear mathematical model can be obtained for mid-low-frequency bands. Theoretical analysis of active and passive dynamics for fluid-filled state reveals the amplitude dependence and a fixed point in passive dynamic stiffness in-phase or active real-frequency characteristics. The amplitude dependence of local loss at the fluid channel entrance and outlet induces the amplitude-dependent dynamics. The amplitude-dependent dynamics constitute a precondition for fixed points. A single fixed point in passive dynamics is experimentally validated, and a pair of fixed points in active dynamics for an AHM-IT-DM-OCA is newly revealed in an experiment, which presents a new issue for further analysis.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5043
Author(s):  
Zbigniew Pozorski ◽  
Jolanta Pozorska ◽  
Ireneusz Kreja ◽  
Łukasz Smakosz

This paper deals with the local loss of stability (wrinkling) problem of a thin facing of a sandwich panel. Classical solutions to the problem of a facing instability resting on a homogeneous and isotropic substructure (a core) are compared. The relations between strain energy components associated with different forms of core deformations are discussed. Next, a new solution for the orthotropic core is presented in detail, which is consistent with the classic solution for the isotropic core. Selected numerical examples confirm the correctness of the analytical formulas. In the last part, parametric analyses are carried out to illustrate the sensitivity of wrinkling stress to a change in the material parameters of the core. These analyses illustrate the possibility of using the equations derived in the article for the variability of Poisson’s ratio from −1 to 1 and for material parameters strongly deviating from isotropy.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1358
Author(s):  
Ewa Golisz ◽  
Adam Kupczyk ◽  
Maria Majkowska ◽  
Jędrzej Trajer

The objective of this paper was to create a mathematical model of vacuum drops in a form that enables the testing of the impact of design parameters of a milking cluster on the values of vacuum drops in the claw. Simulation tests of the milking cluster were conducted, with the use of a simplified model of vacuum drops in the form of a fourth-degree polynomial. Sensitivity analysis and a simulation of a model with a simplified structure of vacuum drops in the claw were carried out. As a result, the impact of the milking machine’s design parameters on the milking process could be analysed. The results showed that a change in the local loss and linear drag coefficient in the long milk duct will have a lower impact on vacuum drops if a smaller flux of inlet air, a higher head of the air/liquid mix, and a higher diameter of the long milk tube are used.


Sign in / Sign up

Export Citation Format

Share Document