Numerical Investigation On the Influences of Boundary Layer Ingestion On Tip Leakage Flow Structures and Losses in a Transonic Axial-Flow Fan

Author(s):  
Zhe Yang ◽  
Hanan Lu ◽  
Tianyu Pan ◽  
Qiushi Li

Abstract In a boundary layer ingesting (BLI) propulsion system, the fan is continuously exposed to inflow distortions. The distorted inflows lead to non-uniform loss distributions along the radial and circumferential directions. Since the rotor tip suffers from higher intensive distortion, the local loss increment is a major contributor to the BLI fan performance penalty. To explore the effects of distorted inflows on tip leakage flow evolutions and associated mechanisms for increased loss in a BLI fan, three-dimensional full-annulus unsteady simulations are conducted. Results show that about 54% of total additional losses due to distortion are formed in tip region and more than 80% of tip entropy generation is related to the tip leakage flow. The intensities of leakage vortex-shock interactions vary at different annulus locations. When the rotor moves into distorted region, the vortex-shock interaction is weaker than the undistorted locations due to attenuated leakage flow. At the locations where the rotor is moving out from distorted region, the vortex-shock interaction is notably enhanced because the front part of blade tip airfoil suffers a higher load, resulting in a rapid vortex core expansion and eventually vortex breakdown. The increase of flow blockage in the front section of blade tip passages at local circumferential positions leads to a corresponding rise of flow loss. The findings in this study highlight the impacts of tip leakage flow on aerodynamic loss of fan working under BLI inflow distortion and provide improved understandings of loss mechanisms in a BLI fan.

Author(s):  
Yanhui Wu ◽  
Wuli Chu ◽  
Xingen Lu ◽  
Junqiang Zhu

The current paper reports on investigations with an aim to advance the understanding of the flow field near the casing of a small-scale high-speed axial flow compressor rotor. Steady three dimensional viscous flow calculations are applied to obtain flow fields at various operating conditions. To demonstrate the validity of the computation, the numerical results are first compared with available measured data. Then, the numerically obtained flow fields are analyzed to identify the behavior of tip leakage flow, and the mechanism of blockage generation arising from flow interactions between the tip clearance flow, the blade/casing wall boundary layers, and non-uniform main flow. The current investigation indicates that the “breakdown” of the tip leakage vortex occurs inside the rotor passage at the near stall condition. The vortex “breakdown” results in the low-energy fluid accumulating on the casing wall spreads out remarkably, which causes a sudden growth of the casing wall boundary layer having a large blockage effect. A low-velocity region develops along the tip clearance vortex at the near stall condition due to the vortex “breakdown”. As the mass flow rate is further decreased, this area builds up rapidly and moves upstream. This area prevents incoming flow from passing through the pressure side of the passage and forces the tip leakage flow to spill into the adjacent blade passage from the pressure side at the leading edge. It is found that the tip leakage flow exerts little influence on the development of the blade suction surface boundary layer even at the near stall condition.


1998 ◽  
Vol 120 (4) ◽  
pp. 683-692 ◽  
Author(s):  
M. Furukawa ◽  
K. Saiki ◽  
K. Nagayoshi ◽  
M. Kuroumaru ◽  
M. Inoue

Experimental and computational results of tip leakage flow fields in a diagonal flow rotor at the design flow rate are compared with those in an axial flow rotor. In the diagonal flow rotor, the casing and hub walls are inclined at 25 deg and 45 deg, respectively, to the axis of rotation, and the blade has airfoil sections with almost the same tip solidity as that of the axial flow rotor. It is found out that “breakdown” of the tip leakage vortex occurs at the aft part of the passage in the diagonal flow rotor. The “vortex breakdown” causes significant changes in the nature of the tip leakage vortex: disappearance of the vortex core, large expansion of the vortex, and appearance of low relative velocity region in the vortex. These changes result in a behavior of the tip leakage flow that is substantially different from that in the axial flow rotor: no rolling-up of the leakage vortex downstream of the rotor, disappearance of the casing pressure trough at the aft part of the rotor passage, large spread of the low-energy fluid due to the leakage flow, much larger growth of the casing wall boundary layer, and considerable increase in the absolute tangential velocity in the casing wall boundary layer. The vortex breakdown influences the overall performance, also: large reduction of efficiency with the tip clearance, and low level of noise.


Author(s):  
Masato Furukawa ◽  
Kazuhisa Saiki ◽  
Kenya Nagayoshi ◽  
Motoo Kuroumaru ◽  
Masahiro Inoue

Experimental and computational results of tip leakage flow fields in a diagonal flow rotor at the design flow rate are compared with those in an axial flow rotor. In the diagonal flow rotor, the casing and hub walls are inclined at 25 degrees and 45 degrees, respectively, to the axis of rotation, and the blade has airfoil sections with almost the same tip solidity as that of the axial flow rotor. It is found out that “breakdown” of the tip leakage vortex occurs at the aft part of the passage in the diagonal flow rotor. The “vortex breakdown” causes significant changes in the nature of the tip leakage vortex: disappearance of the vortex core, large expansion of the vortex, and appearance of low relative velocity region in the vortex. These changes result in the behavior of the tip leakage flow substantially different from that in the axial flow rotor: no rolling-up of the leakage vortex downstream of the rotor, disappearance of the casing pressure trough at the aft part of the rotor passage, large spread of the low-energy fluid due to the leakage flow, much larger growth of the casing wall boundary layer, and considerable increase in the absolute tangential velocity in the casing wall boundary layer. The vortex breakdown influences the overall performance, also: large reduction of efficiency with the tip clearance, and low level of noise.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4168
Author(s):  
Botao Zhang ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Bo Liu

To explain the effect of tip leakage flow on the performance of an axial-flow transonic compressor, the compressors with different rotor tip clearances were studied numerically. The results show that as the rotor tip clearance increases, the leakage flow intensity is increased, the shock wave position is moved backward, and the interaction between the tip leakage vortex and shock wave is intensified, while that between the boundary layer and shock wave is weakened. Most of all, the stall mechanisms of the compressors with varying rotor tip clearances are different. The clearance leakage flow is the main cause of the rotating stall under large rotor tip clearance. However, the stall form for the compressor with half of the designed tip clearance is caused by the joint action of the rotor tip stall caused by the leakage flow spillage at the blade leading edge and the whole blade span stall caused by the separation of the boundary layer of the rotor and the stator passage. Within the investigated varied range, when the rotor tip clearance size is half of the design, the compressor performance is improved best, and the peak efficiency and stall margin are increased by 0.2% and 3.5%, respectively.


2009 ◽  
Vol 131 (8) ◽  
Author(s):  
Alessandro Corsini ◽  
Franco Rispoli ◽  
A. G. Sheard

This study assesses the effectiveness of modified blade-tip configurations in achieving passive noise control in industrial fans. The concepts developed here, which are based on the addition of end-plates at the fan-blade tip, are shown to have a beneficial effect on the fan aeroacoustic signature as a result of the changes they induce in tip-leakage-flow behavior. The aerodynamic merits of the proposed blade-tip concepts are investigated by experimental and computational studies in a fully ducted configuration. The flow mechanisms in the blade-tip region are correlated with the specific end-plate design features, and their role in the creation of overall acoustic emissions is clarified. The tip-leakage flows of the fans are analyzed in terms of vortex structure, chordwise leakage flow, and loading distribution. Rotor losses are also investigated. The modifications to blade-tip geometry are found to have marked effects on the multiple vortex behaviors of leakage flow as a result of changes in the near-wall fluid flow paths on both blade surfaces. The improvements in rotor efficiency are assessed and correlated with the control of tip-leakage flows produced by the modified tip end-plates.


Author(s):  
Alessandro Corsini ◽  
Bruno Perugini ◽  
Franco Rispoli ◽  
A. G. Sheard ◽  
Iain R. Kinghorn

The use of improved blade tip geometries is addressed as an effective design concept for passive noise control in industrial fans. These concepts, based on geometrical implementations of datum blade by means of end-plates at the tip, are shown to influence effectively the fan rotor-only aero acoustic signature because of the modifications of tip leakage flow behaviour. The aerodynamic merits of the proposed blade tip concepts are investigated by experimental and computational studies in fully-ducted configuration. The nature of the flow mechanisms in the blade tip region is correlated to the specific end-plate design features, and their role in creation of overall stage acoustic emissions clarified. By means of such tools, the tip leakage flow structures of the fans are analysed in terms of vortical structure detection, chordwise leakage flow evaluation, and loading distribution. Rotor losses are also investigated within the passage and invoking classical tip loss model. It was found that the tip geometrical modification markedly affects the multiple vortex behaviour of leakage flow, by altering the near-wall fluid flow paths on both blade surfaces. The improvement of rotor efficiency curves were assessed and correlated to the control of tip leakage flows exploited by the tip end-plates.


Author(s):  
Pradyumna Kodancha ◽  
Pramod Salunkhe

Abstract Numerical investigations are carried out in a single-stage subsonic axial flow compressor to unravel the influence of blade tip surface roughness on the tip leakage flow characteristics and hence the compressor performance. The studies were carried out at different tip clearance of 0.38?, 0.77?, 1.15? and 1.54? and blade tip surface roughness of 0.31? and 0.62?. The tip clearance of 0.38? with blade tip surface roughness of 0.62? resulted in the highest stall margin and pressure rise of 20.3% and 4.3%, respectively. The compressor blade loading was found to be improved by 5.9% after incorporating the blade tip surface roughness. The iso-surfaces of vorticity contour plotted using the Q-criterion showed the reduction in strength of the tip leakage vortex. The tip leakage trajectory was found to be shifted towards the suction surface of the blade for the blade tip with surface roughness. This positive alteration in the tip leakage flow structure led to the improved performance for the blade tip with surface roughness.


Author(s):  
Guangyao An ◽  
Yanhui Wu ◽  
Stephen Spence ◽  
Jinhua Lang ◽  
Zhiyang Chen ◽  
...  

Unsteady flow in the blade tip region of modern axial flow compressors is one of the sources of loss, noise, and blade vibration. In some cases, it is potentially linked to stall inception. In this paper, the complex flow fields in the blade tip region of a transonic axial flow compressor rotor have been numerically investigated. The predicted results were validated by experimental data. Analyses of monitoring results of numerical probes showed that three typical flow characteristics occurred as the operating condition approached the stability limit: no flow fluctuation at the first operating point; flow fluctuation with high frequency and low amplitude at the second operating point; flow fluctuation with low frequency and high amplitude at the third operating point. Further analysis of the tip flow field showed that the evolution of the tip leakage vortex experienced three stages as the rotor was throttled. At the first stage, the TLV did not breakdown. At the second stage, a bubble-type breakdown of the tip leakage vortex occurred. At the third stage, a spiral-type breakdown of tip leakage vortex occurred. The current study demonstrated that the flow unsteadiness that appears within the test rotor was induced by the tip leakage vortex breakdown. Furthermore, with the transformation of the vortex breakdown form, the characteristic frequency and amplitude of the flow oscillation substantially changed.


Author(s):  
Dianliang Yang ◽  
Xiaobing Yu ◽  
Zhenping Feng

In this paper, numerical methods have been applied to the investigation of the effect of rotation on the blade tip leakage flow and heat transfer. Using the first stage rotor blade of GE-E3 engine high pressure turbine, both flat tip and squealer tip have been studied. The tip gap height is 1% of the blade height, and the groove depth of the squealer tip is 2% of the blade height. Heat transfer coefficient on tip surface obtained by using different turbulence models was compared with experimental results. And the grid independence study was carried out by using the Richardson extrapolation method. The effect of the blade rotation was studied in the following cases: 1) blade domain is rotating and shroud is stationary; 2) blade domain is stationary and shroud is rotating; and 3) both blade domain and shroud are stationary. In this approach, the effects of the relative motion of the endwall, the centrifugal force and the Coriolis force can be investigated respectively. By comparing the results of the three cases discussed, the effects of the blade rotation on tip leakage flow and heat transfer are revealed. It indicated that the main effect of the rotation on the tip leakage flow and heat transfer is resulted from the relative motion of the shroud, especially for the squealer tip blade.


Sign in / Sign up

Export Citation Format

Share Document