Fleet and Usage Management System (FUMSTM) Technologies for Gas Turbines

Author(s):  
Hesham Azzam ◽  
Peter Knight ◽  
Roger Ellison ◽  
Ken Bryant ◽  
Jonathan Cook ◽  
...  

Working closely with the UK Ministry of Defence (MOD), Smiths has developed a Fleet and Usage Management System (FUMS™) to enable proactive fleet management and continuous diagnostic/prognostic improvements through a single fusion and decision support platform for helicopters, aeroplanes and engines. This paper gives an overview of a suite of FUMS™ algorithms that have been successfully developed for gas turbine applications and validated using a large volume of engine data. The system has been used to analyse both airborne acquired data and ground test-bed data. The system algorithms have been targeted at evaluating the following: stresses of compressor components, thermal transient stresses of turbine components, fatigue. Total Accumulated Cycles (TAC), engine vibration, neural network based performance/degradation and, Usage Indices (UIs) that summarise engine parameters and at the same time indicate the life/condition of engine components. By operating on data from the same engine on two test-beds, the system can be used to normalise the engine vibration and reconcile any differences in vibration-based acceptance/rejection criteria: these differences can result in the acceptance of an engine for on-wing operation at one site and the rejection of the engine at another site. The paper also gives an overview of the FUMS™ intelligent management software, which has allowed the MOD to plug-in 3rd party applications. In this way, MOD can evaluate, verify and procure engine technologies developed by various suppliers and build engine applications from these technologies without the need for software re-writing.

Author(s):  
Marios Patinios ◽  
James A. Scobie ◽  
Carl M. Sangan ◽  
J. Michael Owen ◽  
Gary D. Lock

In gas turbines, hot mainstream flow can be ingested into the wheel-space formed between stator and rotor disks as a result of the circumferential pressure asymmetry in the annulus; this ingress can significantly affect the operating life, performance, and integrity of highly stressed, vulnerable engine components. Rim seals, fitted at the periphery of the disks, are used to minimize ingress and therefore reduce the amount of purge flow required to seal the wheel-space and cool the disks. This paper presents experimental results from a new 1.5-stage test facility designed to investigate ingress into the wheel-spaces upstream and downstream of a rotor disk. The fluid-dynamically scaled rig operates at incompressible flow conditions, far removed from the harsh environment of the engine which is not conducive to experimental measurements. The test facility features interchangeable rim-seal components, offering significant flexibility and expediency in terms of data collection over a wide range of sealing flow rates. The rig was specifically designed to enable an efficient method of ranking and quantifying the performance of generic and engine-specific seal geometries. The radial variation of CO2 gas concentration, pressure, and swirl is measured to explore, for the first time, the flow structure in both the upstream and downstream wheel-spaces. The measurements show that the concentration in the core is equal to that on the stator walls and that both distributions are virtually invariant with radius. These measurements confirm that mixing between ingress and egress is essentially complete immediately after the ingested fluid enters the wheel-space and that the fluid from the boundary layer on the stator is the source of that in the core. The swirl in the core is shown to determine the radial distribution of pressure in the wheel-space. The performance of a double radial-clearance seal is evaluated in terms of the variation of effectiveness with sealing flow rate for both the upstream and the downstream wheel-spaces and is found to be independent of rotational Reynolds number. A simple theoretical orifice model was fitted to the experimental data showing good agreement between theory and experiment for all cases. This observation is of great significance as it demonstrates that the theoretical model can accurately predict ingress even when it is driven by the complex unsteady pressure field in the annulus upstream and downstream of the rotor. The combination of the theoretical model and the new test rig with its flexibility and capability for detailed measurements provides a powerful tool for the engine rim-seal designer.


2016 ◽  
Vol 37 (6/7) ◽  
pp. 385-395 ◽  
Author(s):  
Gareth Wyn Owen

Purpose A case study of the Wales Higher Education Libraries Forum (WHELF) project to procure and implement a shared library management system (LMS) for all universities in Wales, together with the National Health Service Libraries in Wales and the National Library of Wales. In particular, the purpose of this paper is to explore the drivers to this collaboration, outline the benefits achieved and the framework to realise further benefits. Design/methodology/approach Case study review of the process, together with a review of literature on consortia and LMSs. Findings WHELF has developed into a more mature consortium through procuring and implementing a shared LMS. The process has delivered tangible benefits and is driving more work to realise further benefits. Research limitations/implications As the WHELF Shared LMS project is only nearing the end of the implementation phase, many of the anticipated operational benefits cannot be reported. Practical implications Useful case study for other consortia or potential consortia. Originality/value WHELF is in vanguard of consortia developments in the UK, and this is the first case study of the project.


Author(s):  
Giovanni Cicceri ◽  
Roberta Maisano ◽  
Nathalie Morey ◽  
Salvatore Distefano

Author(s):  
Marios Patinios ◽  
James A. Scobie ◽  
Carl M. Sangan ◽  
J. Michael Owen ◽  
Gary D. Lock

In gas turbines, hot mainstream flow can be ingested into the wheel-space formed between stator and rotor discs as a result of the circumferential pressure asymmetry in the annulus; this ingress can significantly affect the operating life, performance and integrity of highly-stressed, vulnerable engine components. Rim seals, fitted at the periphery of the discs, are used to minimise ingress and therefore reduce the amount of purge flow required to seal the wheel-space and cool the discs. This paper presents experimental results from a new 1.5-stage test facility designed to investigate ingress into the wheel-spaces upstream and downstream of a rotor disc. The fluid-dynamically-scaled rig operates at incompressible flow conditions, far removed from the harsh environment of the engine which is not conducive to experimental measurements. The test facility features interchangeable rim-seal components, offering significant flexibility and expediency in terms of data collection over a wide range of sealing-flow rates. The rig was specifically designed to enable an efficient method of ranking and quantifying the performance of generic and engine-specific seal geometries. The radial variation of CO2 gas concentration, pressure and swirl is measured to explore, for the first time, the flow structure in both the upstream and downstream wheel-spaces. The measurements show that the concentration in the core is equal to that on the stator walls and that both distributions are virtually invariant with radius. These measurements confirm that mixing between ingress and egress is essentially complete immediately after the ingested fluid enters the wheel-space and that the fluid from the boundary-layer on the stator is the source of that in the core. The swirl in the core is shown to determine the radial distribution of pressure in the wheel-space. The performance of a double radial-clearance seal is evaluated in terms of the variation of effectiveness with sealing flow rate for both the upstream and the downstream wheel-spaces and is found to be independent of rotational Reynolds number. A simple theoretical orifice model was fitted to the experimental data showing good agreement between theory and experiment for all cases. This observation is of great significance as it demonstrates that the theoretical model can accurately predict ingress even when it is driven by the complex unsteady pressure field in the annulus upstream and downstream of the rotor. The combination of the theoretical model and the new test rig with its flexibility and capability for detailed measurements provides a powerful tool for the engine rim-seal designer.


Sign in / Sign up

Export Citation Format

Share Document