Influence of Blowing Ratio on the Double-Jet Ejection of Cooling Air

Author(s):  
Karsten Kusterer ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
Ryozo Tanaka

Further improvement of the thermal efficiency of modern gas turbines can be achieved by a further reduction of the cooling air amount. Therefore, it is necessary to increase the cooling effectiveness so that the available cooling air fulfils the cooling task even if the amount has been reduced. In particular, the cooling effort for the vanes and blades of the first stage in a modern gas turbine is very high. The task of the film-cooling is to protect the blade material from the hot gas attack to the surface. Unfortunately, aerodynamic mixing processes are enhanced by secondary vortices in the cooling jets and, thus, the film-cooling effectiveness is reduced shortly behind the cooling air ejection through the holes. By improvement of the hole positioning, the negative interaction effects can be reduced. One approach is the Double-jet Film-cooling (DJFC) Technology presented recently by the authors. It has been shown by numerical simulations that for a special and precise arrangement of two holes, the interaction of the secondary vortices can be used for a significant increase in film-cooling effectiveness. This is reached by establishing an anti-kidney vortex pair in a combined jet from two jets starting from two cylindrical ejection holes. The influence of the blowing ratio on the double-jet ejection is investigated numerically. The configurations of the double-hole arrangements have been investigated only for a relative high blowing ratio (M = 1.7). The present investigations focus on moderate blowing ratios (1.0 < M < 1.5) and on a higher blowing ratio of M = 2.0. It can be shown that also for moderate blowing ratios the anti-kidney vortex pair is generated in the combined cooling jet. Thus, high adiabatic film-cooling effectiveness can be reached also for the case with a moderate blowing ratio. The lateral distribution of the cooling air is reduced compared to the cases of higher blowing ratios (M = 1.7, M = 2.0).

Author(s):  
Karsten Kusterer ◽  
Anas Elyas ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
Ryozo Tanaka

Further improvement of the thermal efficiency of modern gas turbines can be achieved by a further reduction of the cooling air amount. Therefore, it is necessary to increase the cooling effectiveness so that the available cooling air fulfils the cooling task even if the amount has been reduced. In particular, the cooling effort for the vanes and blades of the first stage in a modern gas turbine is very high. The task of the film-cooling is to protect the blade material from the hot gas attack to the surface. Unfortunately, aerodynamic mixing processes are enhanced by secondary vortices in the cooling jets and, thus, the film-cooling effectiveness is reduced shortly behind the cooling air ejection through the holes. By improvement of the hole positioning the negative interaction effects can be reduced. The Double-jet Film-cooling (DJFC) Technology invented by the authors is one method to reach a significant increase in film-cooling effectiveness by establishing an anti-kidney vortex pair in a combined jet from the two jets starting from cylindrical ejection holes. This has been shown by numerical investigations and application to an industrial gas turbine as reported in recent publications. Whereas the original design application has been for moderate and high blowing ratios, the present numerical investigation shows that the DJFC is also applicable for lower blowing ratios (0.5<M<1.0) with only slight modification of the geometry of the configuration. The anti-kidney vortex concept can also be established for the lower blowing ratios and, as a result, a very high film-cooling effectiveness is reached not only behind the ejection holes but also for a very long distance downstream (> 30 hole diameters).


Author(s):  
Sadam Hussain ◽  
Xin Yan

Abstract Film cooling is one of the most critical technologies in modern gas turbine engine to protect the high temperature components from erosion. It allows gas turbines to operate above the thermal limits of blade materials by providing the protective cooling film layer on outer surfaces of blade against hot gases. To get a higher film cooling effect on plain surface, current study proposes a novel strategy with the implementation of hole-pair into ramp. To gain the film cooling effectiveness on the plain surface, RANS equations combined with k-ω turbulence model were solved with the commercial CFD solver ANSYS CFX11.0. In the numerical simulations, the density ratio (DR) is fixed at 1.6, and the film cooling effect on plain surface with different configurations (i.e. with only cooling hole, with only ramp, and with hole-pair in ramp) were numerically investigated at three blowing ratios M = 0.25, 0.5, and 0.75. The results show that the configuration with Hole-Pair in Ramp (HPR) upstream the cooling hole has a positive effect on film cooling enhancement on plain surface, especially along the spanwise direction. Compared with the baseline configuration, i.e. plain surface with cylindrical hole, the laterally-averaged film cooling effectiveness on plain surface with HPR is increased by 18%, while the laterally-averaged film cooling effectiveness on plain surface with only ramp is increased by 8% at M = 0.5. As the blowing ratio M increases from 0.25 to 0.75, the laterally-averaged film cooling effectiveness on plain surface with HPR is kept on increasing. At higher blowing ratio M = 0.75, film cooling effectiveness on plain surface with HPR is about 19% higher than the configuration with only ramp.


Author(s):  
Karsten Kusterer ◽  
Nurettin Tekin ◽  
Frederieke Reiners ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
...  

In modern gas turbines, the film cooling technology is essential for the protection of the hot parts, in particular of the first stage vanes and blades of the turbine, against the hot gases from the combustion process in order to reach an acceptable life span of the components. As the cooling air is usually extracted from the compressor, the reduction of the cooling effort would directly result to an increased thermal efficiency of the gas turbine. Understanding of the fundamental physics of film cooling is necessary for the improvement of the state-of-the-art. Thus, huge research efforts by industry as well as research organizations have been undertaken to establish high efficient film cooling technologies. It is a today common knowledge that film cooling effectiveness degradation is caused by secondary flows inside the cooling jets, i.e. the Counter-Rotating Vortices (CRV) or sometimes also mentioned as kidney-vortices, which induce a lift-off of the jet. Further understanding of the secondary flow development inside the jet and how this could be influenced, has led to hole configurations, which can induce Anti-Counter-Rotating Vortices (ACRV) in the cooling jets. As a result, the cooling air remains close to the wall and is additionally distributed flatly along the surface. Beside different other technologies, the NEKOMIMI cooling technology is a promising approach to establish the desired ACRV. It consists of a combination of two holes in just one configuration so that the air is distributed mainly on two cooling air streaks following the special shape of the generated geometry. The original configuration was found to be difficult for manufacturing even by advanced manufacturing processes. Thus, the improvement of this configuration has been reached by a set of geometry parameters, which lead to configurations much easier to be manufactured but preserving the principle of the NEKOMIMI technology. Within a numerical parametric study several advanced configurations have been obtained and investigated under ambient air flow conditions similar to conditions for a wind tunnel test rig. By systematic variation of the parameters a further optimization with respect to highest film cooling effectiveness has been performed. A set of most promising configurations has been also investigated experimentally in the test rig. The best configuration outperforms the basic configuration by 17% regarding the overall averaged adiabatic film cooling effectiveness under the experimental conditions.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Jiaxu Yao ◽  
Jin Xu ◽  
Ke Zhang ◽  
Jiang Lei ◽  
Lesley M. Wright

The interaction of flow and film-cooling effectiveness between jets of double-jet film-cooling (DJFC) holes on a flat plate is studied experimentally. The time-averaged flow field in several axial positions (X/d = −2.0, 1.0, and 5.0) is obtained through a seven-hole probe. The downstream film-cooling effectiveness on the flat plate is measured by pressure sensitive paint (PSP). The inclination angle (θ) of all the holes is 35 deg, and the compound angle (β) is ±45 deg. Effects of the spanwise distance (p = 0, 0.5d, 1.0d, 1.5d, and 2.0d) between the two interacting jets of DJFC holes are studied, while the streamwise distance (s) is kept as 3d. The blowing ratio (M) varies as 0.5, 1.0, 1.5, and 2.0. The density ratio (DR) is maintained at 1.0. Results show that the interaction between the two jets of DJFC holes has different effects at different spanwise distances. For a small spanwise distance (p/d = 0), the interaction between the jets presents a pressing effect. The downstream jet is pressed down and kept attached to the surface by the upstream one. The effectiveness is not sensitive to blowing ratios. For mid-spanwise distances (p/d = 0.5 and 1.0), the antikidney vortex pair dominates the interaction and pushes both of the jets down, thus leading to better coolant coverage and higher effectiveness. As the spanwise distance becomes larger (p/d ≥ 1.5), the pressing effect almost disappears, and the antikidney vortex pair effect is weaker. The jets separate from each other and the coolant coverage decreases. At a higher blowing ratio, the interaction between the jets of DJFC holes happens later.


Author(s):  
Karsten Kusterer ◽  
Anas Elyas ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
Ryozo Tanaka ◽  
...  

Further improvement of the thermal efficiency of modern gas turbines can be achieved by a further reduction of the cooling air amount. Therefore, it is necessary to increase the cooling effectiveness, so that the available cooling air fulfils the cooling task even if the amount has been reduced. Due to experimental and numerical efforts, it is well understood today that aerodynamic mixing processes are enhanced by counter-rotating vortices (CRV) in the cooling jets and lead to jet lift-off effects. Thus, the film-cooling effectiveness is reduced soon behind the cooling air ejection through the holes. Due to that basic understanding, different technologies for improving film cooling have been developed. Some of them focus on establishing anti-counter-rotating vortices (ACRV) inside the cooling jet that prevent the hot gas from flowing underneath the jet and, thus, avoid the lift-off effect. One of these technologies is the double-jet film cooling (DJFC), invented by the authors, where the special arrangement of two cylindrical holes lead to a cooling jet with such an anti-vortex system. However, beside the advantage that the holes are simple cylindrical holes, one disadvantage is that appropriate supply with cooling air for both holes is sometimes difficult to be established in real configurations. Thus, the authors have followed the idea to transfer the original double-jet film cooling principle to a special configuration with merged holes. Thus, in that case only one air supply is necessary but the anti-vortex effect has been preserved. The derived cooling technology has been named NEKOMIMI technology. The paper explains the principle of that technology. Results from experimental investigations including film cooling effectiveness measurements for the new technology are presented. The results are compared to conventional cooling hole configurations showing the tremendous positive effect in reaching highest film cooling effectiveness for the new configuration at M = 1.5 and partly for M = 1. Numerical investigations for the M = 1.5 case indicate that the existence of the ACRV is the likely reason for the enhanced cooling performance of the new configuration.


Author(s):  
Sridharan Ramesh ◽  
Chris LeBlanc ◽  
Srinath V. Ekkad ◽  
Mary Anne Alvin

Film cooling performance depends strongly on the hole exit geometry, blowing ratio, and hole location. The goal of this study is to evaluate film cooling geometries that can provide better protection over the suction surface of the airfoil beyond the throat region. This study compares the performance of standard cylindrical; fan-shaped (10° flare/laidback); tripod hole geometry (15° breakout angle); and tripod holes with shaped exits (5° flare on 15° tripod). Film cooling holes are located just upstream of the throat region on the suction side of an airfoil. The airfoil is a scaled up first stage vane from GE E3 engine and is mounted on a low speed linear cascade wind tunnel. A range of blowing ratios from 0.5 to 2.0 was covered for a cylindrical hole, while ensuring all other hole geometries run under similar mass flow rate conditions. Steady state IR (Infra-Red) technique was employed to measure adiabatic film cooling effectiveness. Results show that the tripod holes with and without shaped exits provide much higher film effectiveness than cylindrical and slightly higher effectiveness than shaped exit holes using 50% lesser cooling air while operating at the same blowing ratios. Effectiveness values up to 0.2–0.25 are seen 40-hole diameters downstream for the tripod hole configurations thus providing cooling in the important trailing edge portion of the airfoil.


Author(s):  
Karsten Kusterer ◽  
Anas Elyas ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
Ryozo Tanaka ◽  
...  

The improvement of the thermal efficiency of modern gas turbines can be achieved by reducing the needed cooling air amount. Consequently it is required to increase the cooling efficiency of applied cooling technologies. Streamwise ejection from a cylindrical hole causes kidney vortices which transport hot gas underneath the cooling jet and leads the cooling jet to lift off from the surface. Cooling performance is highly increased by using the shaped hole technique, which weakens the kidney vortex structure. However the formation of secondary flows can not completely be avoided by using shaped holes instead of cylindrical holes. Another promising film cooling technology is the double-jet film cooling, which prevents the cooling jet from lifting off the surface and raises the lateral spreading of the cooling air by generating an anti kidney vortex. This paper presents a comparison of the film cooling effectiveness between the shaped film cooling technique and the novel double jet film cooling technique for the high blowing ratios M = 1, M = 1.5 and M = 2. Various geometries of fan-shaped holes with lateral expansion angles of 10°, 14° and 18° are used for the comparison study. It can be shown that the shaped hole row arrangement provides higher cooling values in a slight region near to the hole exits, while the double jet film cooling technique shows a obvious cooling advantage in the further downstream area for high blowing ratios. Furthermore recent results of an on-going experimental comparison study between the double jet, trench and cylindrical technique are presented, which proves the advantage capability of the double jet film cooling.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Pingting Chen ◽  
Lang Wang ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang ◽  
...  

Abstract Film cooling technology is widely used in gas turbines. With the additive manufacturing anticipated in the future, there will be more freedom in film cooling hole design. Exploiting this freedom, the present authors tried using curved holes to generate Dean vortices within the delivery line. These vortices have opposite direction of rotation to the vorticity of the kidney vortices and, thus, there is interaction between these vortices in the mixing region. It is shown that as a result of the inclusion of Dean vortices, the curved hole delivery leads to enhanced film cooling effectiveness. Numerical results, including film cooling effectiveness values, tracking of vortices in the flow field, heat transfer coefficients, and net heat flux reduction (NHFR), are compared between the curved hole, round hole, and a laidback, fan-shaped hole with blowing ratios, M, of 0.5, 1.0, 1.5, 2.0, and 2.5. The comparison shows that film cooling effectiveness values with the curved hole are higher than those with cylindrical film cooling holes at every blowing ratio studied. The curved hole has lower film cooling effectiveness values than the laidback, fan-shaped holes when M = 0.5 and 1.0, but shows advantages when the blowing ratio is higher than 1.0. There is heat transfer enhancement for the curved hole case due to a higher kinetic energy transferred to the near-wall region, however. Nevertheless, the curved hole still displays a higher NHFR when the blowing ratio is high.


Author(s):  
Karsten Kusterer ◽  
Nurettin Tekin ◽  
Azadeh Kasiri ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
...  

In modern gas turbines, the film cooling technology is essential for the protection of the hot parts, in particular of the first stage vanes and blades of the turbine, against the hot gases from the combustion process in order to reach an acceptable life span of the components. As the cooling air is usually extracted from the compressor, the reduction of the cooling effort would directly result to an increased thermal efficiency of the gas turbine. Understanding of the fundamental physics of film cooling is necessary for the improvement of the state-of-the-art. Thus, huge research efforts by industry as well as research organizations have been undertaken to establish high efficient film cooling technologies. It is common knowledge today that film cooling effectiveness degradation is caused by secondary flows inside the cooling jets, i.e. the Counter-Rotating Vortices (CRV) or sometimes also mentioned as kidney-vortices, which induce a lift-off of the jet. Further understanding of the secondary flow development inside the jet and how this could be influenced, has led to hole configurations, which can induce Anti-counter-rotating Vortices (ACRV) in the cooling jets. As a result, the cooling air remains close to the wall and is additionally distributed flatly along the surface. Beside different other technologies, the NEKOMIMI cooling technology is a promising approach to establish the desired ACRV. It consists of a combination of two holes in just one configuration so that the air is distributed mainly on two cooling air streaks following the special shape of the generated geometry. The original configuration was found to be difficult for fabrication by advanced machining processes. Thus, the improvement of this configuration has been reached by a set of geometry parameters, which lead to configurations easier to be manufactured but preserving the principle of the NEKOMIMI technology. Within a numerical parametric study several advanced configurations have been obtained and investigated under hot gas flow conditions. By systematic variation of the parameters a further optimization with respect to highest film cooling effectiveness has been performed. The best configuration outperforms the basic configuration by more than 20% regarding the overall averaged adiabatic film cooling effectiveness.


2020 ◽  
Vol 26 ◽  
pp. 157-169 ◽  
Author(s):  
Farouk Kebir

In order to reduce the operating costs of the engine, turbine designers must also increase the life of their components. However, high gas temperatures throughout the engine require more cooling air or better cooling efficiency to protect the parts from thermal damage. This study presents numerical research on cooling holes. Research focused on aerodynamics and thermal aspects of shallow whole angle. The numerical simulation is performed based on Reynolds Averaged Navier-Stokes (RANS) equations with SST turbulence model by using CFX. A modification has been done in the normal injection hole of 35°, by injecting the cold fluid at different blowing ratio, providing a significant change in the shape of holes which later we found in our numerical investigation giving good quality of film cooling effectiveness.


Sign in / Sign up

Export Citation Format

Share Document