scholarly journals Computational Analysis of Surface Curvature Effect on Mist Film Cooling Performance

Author(s):  
Xianchang Li ◽  
Ting Wang

Air film cooling has been widely employed to cool gas turbine hot components such as combustor liners, combustor transition pieces, turbine vanes and blades. Enhancing air film cooling by injecting mist with tiny water droplets with diameters of 5–10μm has been studied in the past on flat surfaces. This paper focuses on computationally investigating the curvature effect on mist/air film cooling enhancement, specifically for film cooling near the leading edge and on the curved surfaces. Numerical simulations are conducted for both 2-D and 3-D settings at low and high operating conditions. The results show, with a nominal blowing ratio of 1.33, air-only adiabatic film cooling effectiveness on the curved surface is less than on a flat surface. The concave (pressure) surface has a better cooling effectiveness than the convex (suction) surface, and the leading edge film cooling has the lowest performance due to main flow impinging against the coolant injection. By adding 2% (weight) mist, film cooling effectiveness can be enhanced approximately 40% at the leading edge, 60% on the concave surface, and 30% on the convex surface. The leading edge film cooling can be significantly affected by changing of the incident angle due to startup or part-load operation. The film cooling coverage could switch from the suction side to the pressure side and leave the surface of the other part unprotected by the cooling film. Under real gas turbine operating conditions at high temperature, pressure, and velocity, mist cooling enhancement could achieve 20% and provides a wall cooling of approximately 180K.

2008 ◽  
Vol 130 (12) ◽  
Author(s):  
Xianchang Li ◽  
Ting Wang

Air-film cooling has been widely employed to cool gas turbine hot components, such as combustor liners, combustor transition pieces, turbine vanes, and blades. Studies with flat surfaces show that significant enhancement of air-film cooling can be achieved by injecting water droplets with diameters of 5–10 μm into the coolant airflow. The mist/air-film cooling on curved surfaces needs to be studied further. Numerical simulation is adopted to investigate the curvature effect on mist/air-film cooling, specifically the film cooling near the leading edge and on the curved surfaces. Water droplets are injected as dispersed phase into the coolant air and thus exchange mass, momentum, and energy with the airflow. Simulations are conducted for both 2D and 3D settings at low laboratory and high operating conditions. With a nominal blowing ratio of 1.33, air-only adiabatic film-cooling effectiveness on the curved surface is lower than on a flat surface. The concave (pressure) surface has a better cooling effectiveness than the convex (suction) surface, and the leading-edge film cooling has the lowest performance due to the main flow impinging against the coolant injection. By adding 2% (weight) mist, film-cooling effectiveness can be enhanced approximately 40% at the leading edge, 60% on the concave surface, and 30% on the convex surface. The leading edge film cooling can be significantly affected by changing of the incident angle due to startup or part-load operation. The film cooling coverage could switch from the suction side to the pressure side and leave the surface of the other part unprotected by the cooling film. Under real gas turbine operating conditions at high temperature, pressure, and velocity, mist-cooling enhancement could reach up to 20% and provide a wall cooling of approximately 180 K.


Author(s):  
Daisuke Hata ◽  
Kazuto Kakio ◽  
Yutaka Kawata ◽  
Masahiro Miyabe

Abstract Recently, the number of gas turbine combined cycle plants is rapidly increasing in substitution of nuclear power plants. The turbine inlet temperature (TIT) is constantly being increased in order to achieve higher effectiveness. Therefore, the improvement of the cooling technology for high temperature gas turbine blades is one of the most important issue to be solved. In a gas turbine, the main flow impinging at the leading edge of the turbine blade generates a so called horseshoe vortex by the interaction of its boundary layer and generated pressure gradient at the leading edge. The pressure surface leg of this horseshoe vortex crosses the passage and reaches the blade suction surface, driven by the pressure gradient existing between two consecutive blades. In addition, this pressure gradient generates a cross-flow along the endwall. This all results into a very complex flow field in proximity of the endwall. For this reason, burnouts tend to occur at a specific position in the vicinity of the leading edge. In this research, a methodology to cool the endwall of the turbine blade by means of film cooling jets from the blade surface and the endwall is proposed. The cooling performance is investigated using the transient thermography method. CFD analysis is also conducted to investigate the phenomena occurring at the endwall and calculate the film cooling effectiveness.


Author(s):  
Ting Wang ◽  
Xianchang Li

Air film cooling has been successfully used to cool gas turbine hot sections for the last half century. A promising technology is proposed to enhance air film cooling with water mist injection. Numerical simulations have shown that injecting a small amount of water droplets into the cooling air improves film-cooling performance significantly. However, previous studies were conducted at conditions of low Reynolds number, temperature, and pressure to allow comparisons with experimental data. As a continuous effort to develop a realistic mist film cooling scheme, this paper focuses on simulating mist film cooling under typical gas turbine operating conditions of high temperature and pressure. The mainstream flow is at 15 atm with a temperature of 1561K. Both 2-D and 3-D cases are considered with different hole geometries on a flat surface, including a 2-D slot, a simple round hole, a compound-angle hole, and fan-shaped holes. The results show that 10%–20% mist (based on the coolant mass flow rate) achieves 5%–10% cooling enhancement and provides an additional 30–68K adiabatic wall temperature reduction. Uniform droplets of 5 to 20 μm are used. The droplet trajectories indicate the droplets tend to move away from the wall, which results in a lower cooling enhancement than under low pressure and temperature conditions. The commercial software Fluent (v. 6.2.16) is adopted in this study, and the standard k-ε model with enhanced wall treatment is adopted as the turbulence model.


2014 ◽  
Vol 554 ◽  
pp. 317-321
Author(s):  
Mohamad Rasidi Bin Pairan ◽  
Norzelawati Binti Asmuin ◽  
Hamidon bin Salleh

Film cooling is one of the cooling techniques applied to the turbine blade. Gas turbine used film cooling technique to protect turbine blade from directly expose to the hot gas to avoid the blade from defect. The focus of this investigation is to investigate the effect of embedded three difference depth of trench at coolant holes geometry. Comparisons are made at four difference blowing ratios which are 1.0, 1.25 and 1.5. Three configuration leading edge with depth Case A (0.0125D), Case B (0.0350D) and Case C (0.713D) were compared to leading edge without trench. Result shows that as blowing ratio increased from 1.0 to 1.25, the film cooling effectiveness is increase for leading edge without trench and also for all cases. However when the blowing ratio is increase to 1.5, film cooling effectiveness is decrease for all cases. Overall the Case B with blowing ratio 1.25 has the best film cooling effectiveness with significant improvement compared to leading edge without trench and with trench Case A and Case C.


2021 ◽  
Author(s):  
Ting Wang ◽  
Ramy Abdelmaksoud

Abstract This paper presents a 2-D numerical investigation of the effect of interactions of moving wakes and shock waves on mist cooling performance over airfoils in the first stator-rotor stage of a transonic gas turbine. The discrete phase model (DPM) is used to simulate and track the evaporation and movement of the tiny water droplets. Breakup and coalescence sub-models are used to simulate the interaction between the droplets themselves. A linear sliding mesh technique is used to study the transient stator-rotor interaction. The results show that the passing unsteady wakes caused by the blade rotation press the mist on the blade suction side flowing near the blade surface, providing more enhanced film cooling effectiveness. The weak oblique shock waves do not exert a significant effect on the air/mist cooling effectiveness. Injecting a 10% mist ratio noticeably improved the cooling enhancement by reducing the wall temperature values up to 200 K in some locations. Injecting the tiny water droplets does not cause a noticeable pressure loss compared to the air-only cooling case. Injecting mist doesn’t alter the effect of shocks.


Author(s):  
Srinivasa Rao Para ◽  
Xianchang Li ◽  
Ganesh Subbuswamy

To improve the gas turbine thermal performance, apart from using a high compression ratio, the turbine inlet temperature must be increased. Therefore, the gas temperature inside the combustion chamber needs to be maintained at a very high level. Hence, cooling of the combustor liner becomes critical. Among all the cooling techniques, film cooling has been successfully applied to cool the combustor liner. In film cooling, coolant air is introduced through discrete holes and forms a thin film between the hot gases and the inner surface of the liner, so that the inner wall can be protected from overheating. The film will be destroyed in the downstream flow because of mixing of hot and cold gases. The present work focuses on numerical study of film cooling under operating conditions, i.e., high temperature and pressure. The effect of coolant injection angles and blowing ratios on film cooling effectiveness is studied. A promising technology, cooling with mist injection, is studied under operating conditions. The effect of droplet size and mist concentration is also analyzed. The results of this study indicate that the film cooling effectiveness can increase ∼11% at gas turbine operating conditions with mist injection of 2% coolant air when droplets of 10μm and a blowing ratio of 1.0 are applied. The cooling performance can be further improved by higher mist concentration. The commercial CFD software, Fluent 6.3.26, is used in this study and the standard k-ε model with enhanced wall functions is adopted as the turbulence model.


Author(s):  
Mallikarjuna Rao Pabbisetty ◽  
B. V. S. S. S. Prasad

Abstract A novel mist-assisted air film cooling scheme is proposed by Li and Wang (2006, “Simulation of Film Cooling Enhancement With Mist Injection,” ASME J. Heat Transfer, 128, pp. 509–519) to increase the film cooling effectiveness of a gas turbine cooled vane/blade. This scheme is further investigated experimentally in this article to determine the effect of the blowing ratio. The coolant is made to pass through the film holes on a flat plate mounted in a test facility. Tiny water droplets, characterized by Rosin-Rammler mean diameter of about 36.7 μm measured with a phase Doppler particle analyzer (PDPA) system is introduced into the cooling air. The effectiveness values are evaluated by measuring the plate surface temperature with the infrared (IR) camera. The maximum percentage of the mist-assisted film cooling effectiveness is 26% more than air film cooling effectiveness when 2.1% of mist is added to the air. In addition, the coolant coverage on the plate is found to be much better with mist cooling in both the streamwise and the spanwise directions. The net enhancement due to the mist-assisted air film cooling effectiveness (Δη) decreases with the increasing values of the blowing ratio in the range of 0.55–2.58 at a density ratio of 2.2.


Sign in / Sign up

Export Citation Format

Share Document