Unsteady CFD Investigation on Inlet Distortion in a Centrifugal Compressor

Author(s):  
Armin Zemp ◽  
Albert Kammerer ◽  
Reza S. Abhari

Blade failure in turbomachinery is frequently caused by an excessive resonant response. Forced response of the blades originates from unsteady fluid structure interactions as conditioned in the inlet section by duct bends, struts or inlet guide vanes. This paper presents the computational part of a research effort that focuses on the blade forced response in a centrifugal compressor. Unsteady fluid flow simulations are used to quantify the forcing function acting on the compressor blades due to inlet flow distortion. The measured inlet flow distribution is applied as inlet boundary conditions in the computation. The unsteady investigation provided the temporal evolution of the distorted flow through the compressor. The time-resolved blade pressure distribution showed the temporal evolution of the dynamic load on the blade surface caused by the inlet distortion. The results suggest that the forcing function is most sensitive in the leading edge region due to inlet angle variations. Towards the impeller stability line the increase in incidence caused separation on the suction side of the main blade and therefore considerably altered the amplitude and the phase angle of the unsteadiness. The investigation of the effect of idealizing the inlet flow distribution on the forcing function showed an increase of the peak amplitude of approximately 30% compared to the actual inlet flow distribution.

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Armin Zemp ◽  
Albert Kammerer ◽  
Reza S. Abhari

Blade failure in turbomachinery is frequently caused by an excessive resonant response. Forced response of the blades originates from unsteady fluid structure interactions as conditioned in the inlet section by duct bends, struts, or inlet guide vanes. This paper presents the computational part of a research effort that focuses on the blade forced response in a centrifugal compressor. Unsteady fluid flow simulations are used to quantify the forcing function acting on the compressor blades due to inlet flow distortion. The measured inlet flow distribution is applied as inlet boundary conditions in the computation. The unsteady investigation provided the temporal evolution of the distorted flow through the compressor. The time-resolved blade pressure distribution showed the temporal evolution of the dynamic load on the blade surface caused by the inlet distortion. The results suggest that the forcing function is most sensitive in the leading edge region due to inlet angle variations. Toward the impeller stability line the increase in incidence caused separation on the suction side of the main blade and therefore considerably altered the amplitude and the phase angle of the unsteadiness. The investigation of the effect of idealizing the inlet flow distribution on the forcing function showed an increase in the peak amplitude of approximately 30% compared with the actual inlet flow distribution.


Author(s):  
Albert Kammerer ◽  
Reza S. Abhari

Centrifugal compressors operating at varying rotational speeds, such as in helicopters or turbochargers, can experience forced response failure modes. The response of the compressors can be triggered by aerodynamic flow non-uniformities, such as with diffuser-impeller interaction or with inlet distortions. The work presented here addresses experimental investigations of forced response in centrifugal compressors with inlet distortions. This research is part of an ongoing effort to develop related experimental techniques and to provide data for validation of computational tools. In this work measurements of blade surface pressure and aerodynamic work distribution were addressed. A series of pressure sensors were designed and installed on rotating impeller blades and simultaneous measurements with blade-mounted strain gauges were performed under engine representative conditions. To the best knowledge of the authors, this is the first publication which presents comprehensive experimental unsteady pressure measurements during forced response for highspeed radial compressors. Experimental data were obtained for both resonance and off-resonance conditions with uniquely tailored inlet distortion. This paper covers aspects relating to the design of fast response pressure sensors and their installation on thin impeller blades. Additionally, sensor properties are outlined with a focus on calibration and measurement uncertainty estimations. The second part of this paper presents unsteady pressure results taken for a number of inlet distortion cases. It will be shown that the intended excitation order due to inlet flow distortion is of comparable magnitude to the second and third harmonics which are consistently observed in all measurements. Finally, an experimental method will be outlined that enables the measurement aerodynamic work on the blade surface during resonant crossing. This approach quantifies the energy exchange between the blade and the flow in terms of cyclic work along the blade surface. The phase angle between the unsteady pressure and the blade movement will be shown to determine the direction of energy transfer between the blade and the fluid.


Author(s):  
Albert Kammerer ◽  
Reza S. Abhari

Centrifugal compressors operating at varying rotational speeds, such as in helicopters or turbochargers, can experience forced response failure modes. The response of the compressors can be triggered by aerodynamic flow nonuniformities such as with diffuser-impeller interaction or with inlet distortions. The work presented here addresses experimental investigations of forced response in centrifugal compressors with inlet distortions. This research is part of an ongoing effort to develop related experimental techniques and to provide data for validation of computational tools. In this work, measurements of blade surface pressure and aerodynamic work distribution were addressed. A series of pressure sensors were designed and installed on rotating impeller blades and simultaneous measurements with blade-mounted strain gauges were performed under engine representative conditions. To the best knowledge of the authors, this is the first publication, which presents comprehensive experimental unsteady pressure measurements during forced response, for high-speed radial compressors. The experimental data were obtained for both resonance and off-resonance conditions with uniquely tailored inlet distortion. This paper covers aspects relating to the design of fast response pressure sensors and their installation on thin impeller blades. Additionally, sensor properties are outlined with a focus on calibration and measurement uncertainty estimations. The second part of this paper presents unsteady pressure results taken for a number of inlet distortion cases. It will be shown that the intended excitation order due to inlet flow distortion is of comparable magnitude to the second and third harmonics, which are consistently observed in all measurements. Finally, an experimental method will be outlined that enables the measurement of aerodynamic work on the blade surface during resonant crossing. This approach quantifies the energy exchange between the blade and the flow in terms of cyclic work along the blade surface. The phase angle between the unsteady pressure and the blade movement will be shown to determine the direction of energy transfer.


Author(s):  
Albert Kammerer ◽  
Reza S. Abhari

Forming the first part of a two-part paper, the experimental approach to acquire resonant vibration data is presented here. Part 2 deals with the estimation of damping. During the design process of turbomachinery components, mechanical integrity has to be guaranteed with respect to high cycle fatigue of blades subject to forced response or flutter. This requires the determination of stress levels within the blade which in turn depend on the forcing function and damping. The vast majority of experimental research in this field has been performed on axial configurations for both compressors and turbines. This experimental study aims to gain insight into forced response vibration at resonance for a radial compressor. For this purpose a research impeller was instrumented with dynamic strain gauges and operated under resonant conditions. Modal properties were analysed using FEM and verified using an optical method termed Electronic-Speckle-Pattern-Correlation-Interferometry (ESPI). During the experiment, unsteady forces acting on the blades were generated by grid installations upstream of the impeller which created a distorted inlet flow pattern. The associated flow properties were measured using an aerodynamic probe. The resultant pressure fluctuations on the blade surface and the corresponding frequency content were assessed using unsteady CFD. The response of the blades was measured for three resonant crossings which could be distinguished by the excitation order and the natural frequency of the blades. Measurements were undertaken for a number of inlet pressure settings starting at near vacuum and then increasing. The overall results showed that the installed distortion screens generated harmonics in addition to the fundamental frequency. The resonant response of the first and second blade mode showed that the underlying dynamics support a single-degree-of-freedom model.


Author(s):  
Albert Kammerer ◽  
Reza S. Abhari

Forming the first part of a two-part paper, the experimental approach to acquire resonant vibration data is presented here. Part II deals with the estimation of damping. During the design process of turbomachinery components, mechanical integrity has to be guaranteed with respect to high cycle fatigue of blades subject to forced response or flutter. This requires the determination of stress levels within the blade, which in turn depend on the forcing function and damping. The vast majority of experimental research in this field has been performed on axial configurations for both compressors and turbines. This experimental study aims to gain insight into forced response vibration at resonance for a radial compressor. For this purpose, a research impeller was instrumented with dynamic strain gauges and operated under resonant conditions. Modal properties were analyzed using finite element method and verified using an optical method termed electronic-speckle-pattern-correlation-interferometry. During the experiment, unsteady forces acting on the blades were generated by grid installations upstream of the impeller, which created a distorted inlet flow pattern. The associated flow properties were measured using an aerodynamic probe. The resultant pressure fluctuations on the blade surface and the corresponding frequency content were assessed using unsteady computational fluid dynamics. The response of the blades was measured for three resonant crossings, which could be distinguished by the excitation order and the natural frequency of the blades. Measurements were undertaken for a number of inlet pressure settings starting at near vacuum and then increasing. The overall results showed that the installed distortion screens generated harmonics in addition to the fundamental frequency. The resonant response of the first and the second blade mode showed that the underlying dynamics support a single-degree-of-freedom model.


Author(s):  
M. M. Al-Mudhafar ◽  
M. Ilyas ◽  
F. S. Bhinder

The results of an experimental study on the influence of severely distorted velocity profiles on the performance of a straight two-dimensional diffuser are reported. The data cover entry Mach numbers ranging from 0.1 to 0.6 and several inlet distortion levels. The pressure recovery progressively deteriorates as the inlet velocity is distorted.


Author(s):  
Abdelgadir M. Mahmoud ◽  
Mohd S. Leong

Turbine blades are always subjected to severe aerodynamic loading. The aerodynamic loading is uniform and Of harmonic nature. The harmonic nature depends on the rotor speed and number of nozzles (vanes counts). This harmonic loading is the main sources responsible for blade excitation. In some circumstances, the aerodynamic loading is not uniform and varies circumferentially. This paper discussed the effect of the non-uniform aerodynamic loading on the blade vibrational responses. The work involved the experimental study of forced response amplitude of model blades due to inlet flow distortion in the presence of airflow. This controlled inlet flow distortion therefore represents a nearly realistic environment involving rotating blades in the presence of airflow. A test rig was fabricated consisting of a rotating bladed disk assembly, an inlet flow section (where flow could be controlled or distorted in an incremental manner), flow conditioning module and an aerodynamic flow generator (air suction module with an intake fan) for investigations under laboratory conditions. Tests were undertaken for a combination of different air-flow velocities and blade rotational speeds. The experimental results showed that when the blades were subjected to unsteady aerodynamic loading, the responses of the blades increased and new frequencies were excited. The magnitude of the responses and the responses that corresponding to these new excited frequencies increased with the increase in the airflow velocity. Moreover, as the flow velocity increased the number of the newly excited frequency increased.


Author(s):  
Zhao Quan-chun ◽  
Li Ke-ming ◽  
Sun Yuan-ying

The test data of a three-stage L.P. compressor with a solid casing and a treated casing under both uniform and circumferentially distorted inlet conditions are presented in this paper. The effects of two different casings on the air flow, efficiency, constant speed line and surge margin of the L.P. compressor are analyzed. Four different configurations of the treated casing were designed and tested. It was found that the surge margin was improved by means of casing treatment. The best one of all configurations is that with large stagnation cell with blades, which brought about increase by 4 percent of the surge margin of the compressor at design speed. The attenuation of inlet flow distortion is also presented with two types of casings. The treated casing has a greater capability to attenuate the inlet distortion than the solid casing.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Armin Zemp ◽  
Reza S. Abhari

Blade failure in turbomachinery is frequently caused by an excessive resonant response. Forced response of the blades typically originates from unsteady fluid structure interactions. This paper presents the experimental and computational results of a research effort focusing on the blade forced response in a high-speed centrifugal compressor caused by the downstream vaned diffuser. The potential field from the downstream vaned diffuser acts as an unsteady impeller relative circumferentially nonuniform disturbance. In this work the effect of varying the radial gap between impeller exit and diffuser vane leading edges was examined. Dynamic strain gauges, which were installed on the blade surfaces, were used to measure the forced response levels of the blades and to estimate the damping properties for different compressor operating conditions and vaneless gap dimensions. Unsteady fluid flow simulations were used to quantify the forcing function acting on the compressor blades due to impeller-diffuser interaction. The time-resolved blade pressure distribution showed the temporal evolution of the dynamic load on the blade surface caused by the diffuser's potential field. The magnitude of the vibratory stress levels was found to depend on the radial gap size, the blade damping properties, and on the compressor operating point. The variation of the radial gap size resulted in a shift of the impeller-diffuser interaction zone towards the main blade leading edge by up to 5% of the streamwise location.


Sign in / Sign up

Export Citation Format

Share Document