Modelling of Variables Gas Properties and Compositions in Turbomachinery Flow Simulations

Author(s):  
Luca Di Mare

This paper describes the formulation of computational methods for aerothermodynamic predictions in turbomachinery passages and gas-turbine engine components accounting for changes in fluid properties. The changes accounted for include the change of specific heats with temperature and changes in composition as consequence of the injection of chemical compounds different from those forming the main gas stream, and the reactions between the main gas stream and these compounds. The flow equations for compressible flow with variable properties and compositions are stated, with particular reference to the inviscid flux jacobians and their eigenvalues and eigenvectors. These are used to derive a Roe-like flux difference splitting algorithm. The algorithm derived is applied to the computation of variable property, reacting flow in a transonic nozzle and to the computation of equilibrium flow in a High-Pressure turbine stage.

1992 ◽  
Author(s):  
KIRK D ◽  
ANDREW VAVRECK ◽  
ERIC LITTLE ◽  
LESLIE JOHNSON ◽  
BRETT SAYLOR

2001 ◽  
Author(s):  
Edward Luke ◽  
Xiao-Ling Tong ◽  
Junxiao Wu ◽  
Lin Tang ◽  
Pasquale Cinnella

Alloy Digest ◽  
2001 ◽  
Vol 50 (8) ◽  

Abstract TIMETAL 829 is a Ti-5.5Al-3.5Sn-3Zr-1Nb-0.25Mo-0.3Si near-alpha titanium alloy that is weldable and has high strength and is a creep resistant high temperature alloy. The major application is as gas turbine engine components. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on forming and heat treating. Filing Code: TI-118. Producer or source: Timet.


1998 ◽  
Vol 120 (1) ◽  
pp. 60-68 ◽  
Author(s):  
V. R. Katta ◽  
W. M. Roquemore

Spatially locked vortices in the cavities of a combustor aid in stabilizing the flames. On the other hand, these stationary vortices also restrict the entrainment of the main air into the cavity. For obtaining good performance characteristics in a trapped-vortex combustor, a sufficient amount of fuel and air must be injected directly into the cavity. This paper describes a numerical investigation performed to understand better the entrainment and residence-time characteristics of cavity flows for different cavity and spindle sizes. A third-order-accurate time-dependent Computational Fluid Dynamics with Chemistry (CFDC) code was used for simulating the dynamic flows associated with forebody-spindle-disk geometry. It was found from the nonreacting flow simulations that the drag coefficient decreases with cavity length and that an optimum size exists for achieving a minimum value. These observations support the earlier experimental findings of Little and Whipkey (1979). At the optimum disk location, the vortices inside the cavity and behind the disk are spatially locked. It was also found that for cavity sizes slightly larger than the optimum, even though the vortices are spatially locked, the drag coefficient increases significantly. Entrainment of the main flow was observed to be greater into the smaller-than-optimum cavities. The reacting-flow calculations indicate that the dynamic vortices developed inside the cavity with the injection of fuel and air do not shed, even though the cavity size was determined based on cold-flow conditions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

AbstractTemperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

Abstract Temperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


Author(s):  
Jeff W. Bird ◽  
Howard M. Schwartz

This review surveys knowledge needed to develop an improved method of modelling the dynamics of gas turbine performance for fault diagnosis applications. Aerothermodynamic and control models of gas turbine processes are examined as complementary to models derived directly from test data. Extensive, often proprietary data are required for physical models of components, while system identification (SI) methods need data from specially-designed tests. Current methods are limited in: tuning models to test data, non-linear effects, component descriptions in SI models, robustness to noise, and inclusion of control systems and actuators. Conclusions are drawn that SI models could be formulated, with parameters which describe explicitly the functions of key engine components, to offer improved diagnostic capabilities.


2013 ◽  
Vol 16 (1) ◽  
pp. 189-206 ◽  
Author(s):  
C. D. Erdbrink ◽  
V. V. Krzhizhanovskaya ◽  
P. M. A. Sloot

We combine non-hydrostatic flow simulations of the free surface with a discharge model based on elementary gate flow equations for decision support in the operation of hydraulic structure gates. A water level-based gate control used in most of today's general practice does not take into account the fact that gate operation scenarios producing similar total discharged volumes and similar water levels may have different local flow characteristics. Accurate and timely prediction of local flow conditions around hydraulic gates is important for several aspects of structure management: ecology, scour, flow-induced gate vibrations and waterway navigation. The modelling approach is described and tested for a multi-gate sluice structure regulating discharge from a river to the sea. The number of opened gates is varied and the discharge is stabilized with automated control by varying gate openings. The free-surface model was validated for discharge showing a correlation coefficient of 0.994 compared to experimental data. Additionally, we show the analysis of computational fluid dynamics (CFD) results for evaluating bed stability and gate vibrations.


Sign in / Sign up

Export Citation Format

Share Document