A Quick Search Strategy for Multiple Fault Diagnosis of Turbomachinery

Author(s):  
Tachung Yang ◽  
Ming-Wei Hsu

Fault diagnosis is an important research issue in rotordynamics. Unbalance is one of the most frequent faults occurs in turbomachinery. A quick search strategy for model-based diagnosis is proposed in this paper to identify both locations and amounts of multiple unbalances by using the unbalance responses at the bearing locations under one specified rotating speed. Effects of measurement noise are analyzed and robustness of the proposed method is validated by means of numerical results. The reason for quick searching is non-repeatedly counting the found faults, and the computational time is saved. This method is suitable for on-line monitoring the gradual changes of unbalance on rotating machines; especially those required fixedly operating speeds.

2004 ◽  
Vol 126 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Jaime A. Camelio ◽  
S. Jack Hu

This paper presents a new approach to multiple fault diagnosis for sheet metal fixtures using designated component analysis (DCA). DCA first defines a set of patterns based on product/process information, then finds the significance of these patterns from the measurement data and maps them to a particular set of faults. Existing diagnostics methods has been mainly developed for rigid-body-based 3-2-1 locating scheme. Here an N-2-1 locating scheme is considered since sheet metal parts are compliant. The proposed methodology integrates on-line measurement data, part geometry, fixture layout and sensor layout in detecting simultaneous multiple fixture faults. A diagnosability discussion for the different type of faults is presented. Finally, an application of the proposed method is presented through a computer simulation.


2006 ◽  
Vol 2 (4) ◽  
pp. 262-276 ◽  
Author(s):  
Daniel Davids ◽  
Siddhartha Datta ◽  
Arindam Mukherjee ◽  
Bharat Joshi ◽  
Arun Ravindran

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4424
Author(s):  
Udeme Inyang ◽  
Ivan Petrunin ◽  
Ian Jennions

Bearings are critical components found in most rotating machinery; their health condition is of immense importance to many industries. The varied conditions and environments in which bearings operate make them prone to single and multiple faults. Widespread interest in the improvements of single fault diagnosis meant limited attention was spent on multiple fault diagnosis. However, multiple fault diagnosis poses extra challenges due to the submergence of the weak fault by the strong fault, presence of non-Gaussian noise, coupling of the frequency components, etc. A number of existing convolutional neural network models operate on a distinct feature that is not enough to assure reliable results in the presence of these challenges. In this paper, extended feature sets in three homogenous deep learning models are used for multiple fault diagnosis. This ensures a measure of diversity is introduced to the health management dataset to obtain complementary solutions from the models. The outputs of the models are fused through blending ensemble learning. Experiments using vibration datasets based on bearing multiple faults show an accuracy of 98.54%, with an improvement of 2.74% in the overall effectiveness over the single models. Compared with other technologies, the results show that this approach provides an improved generalized diagnostic capability.


Author(s):  
Antoni Ligęza ◽  
Jan Kościelny

A New Approach to Multiple Fault Diagnosis: A Combination of Diagnostic Matrices, Graphs, Algebraic and Rule-Based Models. The Case of Two-Layer ModelsThe diagnosis of multiple faults is significantly more difficult than singular fault diagnosis. However, in realistic industrial systems the possibility of simultaneous occurrence of multiple faults must be taken into account. This paper investigates some of the limitations of the diagnostic model based on the simple binary diagnostic matrix in the case of multiple faults. Several possible interpretations of the diagnostic matrix with rule-based systems are provided and analyzed. A proposal of an extension of the basic, single-level model based on diagnostic matrices to a two-level one, founded on causal analysis and incorporating an OR and an AND matrix is put forward. An approach to the diagnosis of multiple faults based on inconsistency analysis is outlined, and a refinement procedure using a qualitative model of dependencies among system variables is sketched out.


Author(s):  
Zhenyu Kong ◽  
Dariusz Ceglarek ◽  
Wenzhen Huang

Dimensional control has a significant impact on overall product quality and performance of large and complex multistation assembly systems. To date, the identification of process-related faults that cause large variations of key product characteristics (KPCs) remains one of the most critical research topics in dimensional control. This paper proposes a new approach for multiple fault diagnosis in a multistation assembly process by integrating multivariate statistical analysis with engineering models. The proposed method is based on the following steps: (i) modeling of fault patterns obtained using state space representation of process and product information that explicitly represents the relationship between process-related error sources denoted by key control characteristics (KCCs) and KPCs, and (ii) orthogonal diagonalization of measurement data using principal component analysis (PCA) to project measurement data onto the axes of an affine space formed by the predetermined fault patterns. Orthogonal diagonalization allows estimating the statistical significance of the root cause of the identified fault. A case study of fault diagnosis for a multistation assembly process illustrates and validates the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document