scholarly journals Health Condition Estimation of Bearings with Multiple Faults by a Composite Learning-Based Approach

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4424
Author(s):  
Udeme Inyang ◽  
Ivan Petrunin ◽  
Ian Jennions

Bearings are critical components found in most rotating machinery; their health condition is of immense importance to many industries. The varied conditions and environments in which bearings operate make them prone to single and multiple faults. Widespread interest in the improvements of single fault diagnosis meant limited attention was spent on multiple fault diagnosis. However, multiple fault diagnosis poses extra challenges due to the submergence of the weak fault by the strong fault, presence of non-Gaussian noise, coupling of the frequency components, etc. A number of existing convolutional neural network models operate on a distinct feature that is not enough to assure reliable results in the presence of these challenges. In this paper, extended feature sets in three homogenous deep learning models are used for multiple fault diagnosis. This ensures a measure of diversity is introduced to the health management dataset to obtain complementary solutions from the models. The outputs of the models are fused through blending ensemble learning. Experiments using vibration datasets based on bearing multiple faults show an accuracy of 98.54%, with an improvement of 2.74% in the overall effectiveness over the single models. Compared with other technologies, the results show that this approach provides an improved generalized diagnostic capability.

Author(s):  
Antoni Ligęza ◽  
Jan Kościelny

A New Approach to Multiple Fault Diagnosis: A Combination of Diagnostic Matrices, Graphs, Algebraic and Rule-Based Models. The Case of Two-Layer ModelsThe diagnosis of multiple faults is significantly more difficult than singular fault diagnosis. However, in realistic industrial systems the possibility of simultaneous occurrence of multiple faults must be taken into account. This paper investigates some of the limitations of the diagnostic model based on the simple binary diagnostic matrix in the case of multiple faults. Several possible interpretations of the diagnostic matrix with rule-based systems are provided and analyzed. A proposal of an extension of the basic, single-level model based on diagnostic matrices to a two-level one, founded on causal analysis and incorporating an OR and an AND matrix is put forward. An approach to the diagnosis of multiple faults based on inconsistency analysis is outlined, and a refinement procedure using a qualitative model of dependencies among system variables is sketched out.


2019 ◽  
Vol 9 (2) ◽  
pp. 311 ◽  
Author(s):  
Xiaofeng Lv ◽  
Deyun Zhou ◽  
Ling Ma ◽  
Yongchuan Tang

Aiming at solving the multiple fault diagnosis problem as well as the sequence of all the potential multiple faults simultaneously, a new multiple fault diagnosis method based on the dependency model method as well as the knowledge in test results and the prior probability of each fault type is proposed. Firstly, the dependency model of the system can be built and used to formulate the fault-test dependency matrix. Then, the dependency matrix is simplified according to the knowledge in the test results of the system. After that, the logic ‘OR’ operation is performed on the feature vectors of the fault status in the simplified dependency matrix to formulate the multiple fault dependency matrix. Finally, fault diagnosis is based on the multiple fault dependency matrix and the ranking of each fault type calculated basing on the prior probability of each fault status. An illustrative numerical example and a case study are presented to verify the effectiveness and superiority of the proposed method.


2020 ◽  
Vol 10 (6) ◽  
pp. 2057 ◽  
Author(s):  
Wan Zhang ◽  
Yu Ding ◽  
Xiaoan Yan ◽  
Minping Jia

As one of the important parts of a mechanical transmission system, a rolling bearing often has multiple faults coexisting, and the mutual coupling between multiple faults poses a challenge for accurate diagnosis of rolling bearings. Aiming at the above problems, this paper proposes a weighted Morlet wavelet-overlapping group sparse (WOGS) algorithm for the multiple fault diagnosis of rolling bearings. On the basis of the overlapping feature of Morlet wavelet transform coefficients, a WOGS optimization model was initially constructed. Thereafter, the weight coefficients in the model were constructed by analyzing the impulse features of the signal. Thus, majorization-minimization was used to solve the optimization problem. A case study on weak multiple fault diagnosis of rolling bearings was performed to validate the effectiveness of the WOGS algorithm. Quantitative indexes are used to further discuss the extraction accuracies of different algorithms, and the results show that the proposed algorithm exhibits better performance than other algorithms.


2021 ◽  
pp. 1-12
Author(s):  
Lintao Zhou ◽  
Qinge Wu ◽  
Hu Chen ◽  
Tao Hu

Accurately diagnosing power transformer faults is critical to improving the operational reliability of power systems. Although some researchers have made great efforts to improve the accuracy of transformer fault diagnosis, accurate diagnosis of multiple faults is still a difficult problem. In order to improve the accuracy of transformer multiple faults diagnosis, a multiple fault diagnosis method based on interval fuzzy probability is proposed. Different from the previous methods which provide single-value probability, this method use probability interval to represent the occurrence degree of various possible faults, which can objectively predict the potential faults that occurring in a transformer and provide a more reasonable explanation for the diagnosis results. In the proposed method, the interval fuzzy set is used to describe the evaluation of state variables and the interval fuzzy probability model based on interval weighted average is applied to integrate the fault information. The representative matrix of fault types based on fuzzy preference relationship is established to estimate the relative importance of each gas in the dissolved gases. The proposed method can provide the probability of probable faults in transformer, help engineers quickly determine the type and location of faults, and improve the accuracy of diagnosis and maintenance efficiency of transformer. The effectiveness of the method is verified with case studies.


2006 ◽  
Vol 2 (4) ◽  
pp. 262-276 ◽  
Author(s):  
Daniel Davids ◽  
Siddhartha Datta ◽  
Arindam Mukherjee ◽  
Bharat Joshi ◽  
Arun Ravindran

Author(s):  
Zhenyu Kong ◽  
Dariusz Ceglarek ◽  
Wenzhen Huang

Dimensional control has a significant impact on overall product quality and performance of large and complex multistation assembly systems. To date, the identification of process-related faults that cause large variations of key product characteristics (KPCs) remains one of the most critical research topics in dimensional control. This paper proposes a new approach for multiple fault diagnosis in a multistation assembly process by integrating multivariate statistical analysis with engineering models. The proposed method is based on the following steps: (i) modeling of fault patterns obtained using state space representation of process and product information that explicitly represents the relationship between process-related error sources denoted by key control characteristics (KCCs) and KPCs, and (ii) orthogonal diagonalization of measurement data using principal component analysis (PCA) to project measurement data onto the axes of an affine space formed by the predetermined fault patterns. Orthogonal diagonalization allows estimating the statistical significance of the root cause of the identified fault. A case study of fault diagnosis for a multistation assembly process illustrates and validates the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document