scholarly journals Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded

Author(s):  
Dennis Culley

Controls systems are an increasingly important component of turbine-engine system technology. However, as engines become more capable, the control system itself becomes ever more constrained by the inherent environmental conditions of the engine; a relationship forced by the continued reliance on commercial electronics technology. A revolutionary change in the architecture of turbine-engine control systems will change this paradigm and result in fully distributed engine control systems. Initially, the revolution will begin with the physical decoupling of the control law processor from the hostile engine environment using a digital communications network and engine-mounted high temperature electronics requiring little or no thermal control. The vision for the evolution of distributed control capability from this initial implementation to fully distributed and embedded control is described in a roadmap and implementation plan. The development of this plan is the result of discussions with government and industry stakeholders.

2022 ◽  
Author(s):  
Thanakorn Khamvilai ◽  
Medrdad Pakmehr ◽  
George Lu ◽  
Yaojung Yang ◽  
Eric M. Feron ◽  
...  

2011 ◽  
Vol 14 (4) ◽  
pp. 52-56
Author(s):  
Seong-Jin Hong ◽  
Seung-Min Kim ◽  
Sim-Kyun Yook ◽  
Sam-Sik Nam

2022 ◽  
Vol 2148 (1) ◽  
pp. 012043
Author(s):  
Hongyu Zhang ◽  
Yajing Li ◽  
Yifei Wang ◽  
Miaocheng Weng ◽  
Fang Liu

Abstract The payload of the Chang’e-4 biological experiment is used as an object for designing and analyzing the location of cold and heat sources. The research compares and analyzes the energy consumption and temperature uniformity of cooling and heating sources mounted on different surfaces using Thermal Desktop/Sinda Fluint, which may be used to guide the design and operation of active thermal control systems. The results indicate that when the hot and cold sources are mounted on the payload’s top surface, the total energy consumption of the active thermal control system is minimized and temperature uniformity is improved.


Computers ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 97
Author(s):  
George K. Adam ◽  
Nikos Petrellis ◽  
Panagiotis A. Kontaxis ◽  
Tilemachos Stylianos

The progress of embedded control systems in the last several years has made possible the realization of highly-effective controllers in many domains. It is essential for such systems to provide effective performance at an affordable cost. Furthermore, real-time embedded control systems must have low energy consumption, as well as be reliable and timely. This research investigates primarily the feasibility of implementing an embedded real-time control system, based on a low-cost, commercially off-the-shelf (COTS) microcontroller platform. It explores real-time issues, such as the reliability and timely response, of such a system implementation. This work presents the development and performance evaluation of a novel real-time control architecture, based upon a BeagleBoard microcontroller, and applied into the PWM (pulse width modulation) control of a three-phase induction motor in a suction pump. The approach followed makes minimal use of general-purpose hardware (BeagleBone Black microcontroller board) and open-source software components (including Linux Operating System with PREEMPT_RT real-time support) for building a reliable real-time control system. The applicability of the proposed control system architecture is validated and evaluated in a real case study in manufacturing. The results provide sufficient evidence of the efficiency and reliability of the proposed approach into the development of a real-time control system based upon COTS components.


Author(s):  
Rohit K. Belapurkar ◽  
Rama K. Yedavalli

Series cascade control systems, in which, the output of one process drives a second process are studied extensively in literature. Traditional control design methods based on transfer function approach are used for design of cascade control systems with disturbances in inner loop and time delays in outer loop process. Design of current turboshaft engine control systems are based on cascade control system framework. Next generation aircraft engine control systems are based on distributed architecture, in which, communication constraints like time delays can degrade control system performance. Stability of networked cascade control systems for turboshaft engines in a state space framework is analyzed in the presence of time delays. Two architectures of networked cascade control systems are presented. Stability conditions for discrete-time cascade control systems are presented for each of the architecture with time delays which are more than the sampling time.


1991 ◽  
Author(s):  
Stephen M. Emo ◽  
Terrance R. Kinney ◽  
Ka K. Wong

Sign in / Sign up

Export Citation Format

Share Document