Reduced Order Model of a Bladed Rotor With Geometric Mistuning: Comparison Between Modified Modal Domain Analysis and Frequency Mistuning Approach

Author(s):  
Yasharth Bhartiya ◽  
Alok Sinha

Mistuning has traditionally been modeled through the changes in Young’s moduli of blades, or equivalently through perturbations in the stiffness matrices associated with blades’ degrees of freedom. Such a mistuning is termed as Frequency Mistuning because it alters the blade alone frequencies without altering the mode shapes component associated with the blades. Many reduced order models have been developed for frequency mistuning [1–7]. Although frequency mistuning has been developed for Young’s Modulus mistuning, it is applied to geometric mistuning in the literature. In this paper frequency mistuning is applied to a geometrically mistuned system and the results from Subset of Nominal Modes (SNM) [5] technique, a reduced order model based on frequency mistuning, are compared with those from Modified Modal Domain Analysis (MMDA). It is shown that frequency mistuning analysis is unable to capture the effects of geometric mistuning in general, whereas MMDA provides accurate estimates of natural frequencies, mode shapes and forced response.

2013 ◽  
Vol 136 (7) ◽  
Author(s):  
Yasharth Bhartiya ◽  
Alok Sinha

The results from a reduced order model based on frequency mistuning are compared with those from recently developed modified modal domain analysis (MMDA). For the academic bladed rotor considered in this paper, the frequency mistuning analysis is unable to capture the effects of geometric mistuning, whereas MMDA provides accurate estimates of natural frequencies, mode shapes, and forced response.


Author(s):  
Yasharth Bhartiya ◽  
Alok Sinha

Modified Modal Domain Analysis (MMDA) is a novel method for the development of a reduced-order model of a bladed rotor with geometric mistuning. This method utilizes proper orthogonal decomposition (POD) of Coordinate Measurement Machine (CMM) data on blades’ geometries, and sector analyses using ANSYS and solid modeling. In a recent paper, MMDA has been extended to use second order Taylor series approximations of perturbations in mass and stiffness matrices (δM and δK) instead of exact δM and δK. Taylor series expansions of deviations in mass and stiffness matrices due to geometric mistuning give a direct approach for generating the reduced order model from the components of POD features of spatial variations in blades’ geometries. Reversing the process, algorithms for mistuning identification based on MMDA are presented in this paper to calculate the geometric mistuning parameters. Two types of algorithm, one based on modal analyses and the other on the forced responses, are presented. The validity of these methods are then verified through a mistuned academic rotor.


Author(s):  
Yasharth Bhartiya ◽  
Alok Sinha

Modified modal domain analysis (MMDA) is a novel method for the development of a reduced order model of a bladed rotor with geometric mistuning. This method utilizes proper orthogonal decomposition (POD) of coordinate measurement machine (CMM) data on blades' geometries, and sector analyses using ansys and solid modeling. In a recent paper, MMDA has been extended to use second order Taylor series approximations of perturbations in mass and stiffness matrices (δM and δK) instead of exact δM and δK. Taylor series expansions of deviations in mass and stiffness matrices due to geometric mistuning give a direct approach for generating the reduced order model from the components of POD features of spatial variations in blades' geometries. Reversing the process, algorithms for mistuning identification based on MMDA are presented in this paper to calculate the geometric mistuning parameters. Two types of algorithm, one based on modal analyses and the other on the forced responses, are presented. The validity of these methods are then verified through a mistuned academic rotor.


Author(s):  
Vinod Vishwakarma ◽  
Alok Sinha ◽  
Yasharth Bhartiya ◽  
Jeffery M. Brown

Modified modal domain analysis (MMDA), a reduced order modeling technique, is applied to a geometrically mistuned integrally bladed rotor to obtain its natural frequencies, mode shapes, and forced response. The geometric mistuning of blades is described in terms of proper orthogonal decomposition (POD) of the coordinate measurement machine (CMM) data. Results from MMDA are compared to those from the full (360 deg) rotor Ansys model. It is found that the MMDA can accurately predict natural frequencies, mode shapes, and forced response. The effects of the number of POD features and the number of tuned modes used as bases for model reduction are examined. Results from frequency mistuning approaches, fundamental mistuning model (FMM) and subset of nominal modes (SNM), are also generated and compared to those from full (360 deg) rotor Ansys model. It is clearly seen that FMM and SNM are unable to yield accurate results whereas MMDA yields highly accurate results.


Author(s):  
Vinod Vishwakarma ◽  
Alok Sinha

Modified Modal Domain Analysis (MMDA) is a method to generate an accurate reduced order model (ROM) of a bladed disk with geometric mistuning. An algorithm based on MMDA ROM and a state observer is developed to estimate forcing functions for synchronous (including integer multiples) conditions from the dynamic responses obtained at few nodal locations of blades. The method is tested on a simple spring-mass model, finite element model (FEM) of a geometrically mistuned academic rotor and FEM of a bladed rotor of an industrial scale transonic research compressor. The accuracy of the forcing function estimation algorithm is examined by varying the order of reduced-order model and the number of vibration output signals.


Author(s):  
Vinod Vishwakarma ◽  
Alok Sinha ◽  
Yasharth Bhartiya ◽  
Jeffery M. Brown

Modified Modal Domain Analysis (MMDA), a reduced order modeling technique, is applied to a geometrically mistuned integrally bladed rotor to obtain its natural frequencies, mode shapes and forced response. The geometric mistuning of blades is described in terms of proper orthogonal decomposition (POD) of the coordinate measurement machine (CMM) data. Results from MMDA are compared to those from the full (360 degrees) rotor ANSYS model. It is found that the MMDA can accurately predict natural frequencies, mode shapes, and forced response. The effects of the number of POD features and the number of tuned modes used as bases for model reduction are examined. Results from frequency mistuning approaches, fundamental mistuning model (FMM) and subset of nominal modes (SNM), are also generated and compared to those from full (360 degree) rotor ANSYS model. It is clearly seen that FMM and SNM are unable to yield accurate results whereas MMDA yields highly accurate results.


Author(s):  
Alok Sinha

This paper deals with a reduced-order model of a multi-stage rotor in which each stage has a different number of blades. In particular, it is shown that a reduced-order model can be developed on the basis of tuned modes of certain bladed disks. The validity of this algorithm is shown for a spring-mass model with three degrees of freedom per sector. In addition, the statistical distributions of the peak maximum amplitude are generated via Monte Carlo simulations, and the impact of mistuning is examined for a two-stage rotor.


2006 ◽  
Vol 326-328 ◽  
pp. 1523-1526
Author(s):  
Il Kweon Oh ◽  
Seong Won Yeom ◽  
Dong Weon Lee

In order to control the IPMC (Ionic Polymer Metal Composite) actuators, it is necessary to use a vision sensing system and a reduced order model from the vision sensing data. In this study, the MROVS (Modal Reduced Order Vision Sensing) model using the least square method has been developed for implementation of the biomimetic motion generation. The simulated transverse displacement is approximated with a sum of the lower mode shapes of the cantilever beam. The NIPXI 1409 image acquisition board and CCD camera (XC-HR50) are used in the experimental setup. Present results show that the MROVS model can efficiently process the vision sensing of the biomimetic IPMC actuator with cost-effective computational time.


Author(s):  
Alok Sinha

This paper deals with the development of an accurate reduced-order model of a bladed disk with geometric mistuning. The method is based on vibratory modes of various tuned systems and proper orthogonal decomposition of coordinate measurement machine (CMM) data on blade geometries. Results for an academic rotor are presented to establish the validity of the technique.


Author(s):  
M.-T. Yang ◽  
J. H. Griffin

Reduced order models have been reported in the literature that can be used to predict the harmonic response of mistuned bladed disks. It has been shown that in many cases they exhibit structural fidelity comparable to a finite element analysis of the full bladed disk system while offering a significant improvement in computational efficiency. In these models the blades and disk are treated as distinct substructures. This paper presents a new, simpler approach for developing reduced order models in which the modes of the mistuned system are represented in terms of a sub-set of nominal system modes. It has the following attributes: the input requirements are relatively easy to generate; it accurately predicts mistuning effects in regions where frequency veering occurs; as the number of degrees of freedom increases it converges to the exact solution; it accurately predicts stresses as well as displacements; and it accurately models the deformation and stresses at the blades’ bases.


Sign in / Sign up

Export Citation Format

Share Document