Modal Reduced Order Model for Vision Sensing of IPMC Actuator

2006 ◽  
Vol 326-328 ◽  
pp. 1523-1526
Author(s):  
Il Kweon Oh ◽  
Seong Won Yeom ◽  
Dong Weon Lee

In order to control the IPMC (Ionic Polymer Metal Composite) actuators, it is necessary to use a vision sensing system and a reduced order model from the vision sensing data. In this study, the MROVS (Modal Reduced Order Vision Sensing) model using the least square method has been developed for implementation of the biomimetic motion generation. The simulated transverse displacement is approximated with a sum of the lower mode shapes of the cantilever beam. The NIPXI 1409 image acquisition board and CCD camera (XC-HR50) are used in the experimental setup. Present results show that the MROVS model can efficiently process the vision sensing of the biomimetic IPMC actuator with cost-effective computational time.

2018 ◽  
Vol 7 (4.13) ◽  
pp. 195-201
Author(s):  
Thinesh C ◽  
M Y Harmin

This paper presents a Combined Modal Finite Element (CMFE) approach to develop a Nonlinear Reduced Order Model (NROM) in order to characterize the nonlinear properties of the wing plate model. The wing plate model is subjected to three types of loading cases. The first case considers a uniformly distributed loading on the whole wing plate model for describing the bending deflection; the second case considers a uniformly distributed loading on both leading and trailing edges with one of them of an opposite direction for describing the twisting deflection; the third case considers the loading on the leading edge for describing a combination of bending-twisting deflection. The accuracy of the results is represented in the form of mean error, the standard deviation of the error and the percentage of error. From the findings, the NROMs are able to predict the nonlinear deformations of the wing plate with a minimal computational time and reasonably good accuracy. The results also indicate the importance of the selection modes when conducting the analysis.  


Author(s):  
Elizabeth H. Krath ◽  
Forrest L. Carpenter ◽  
Paul G. A. Cizmas ◽  
David A. Johnston

Abstract This paper presents a novel, more efficient reduced-order model based on the proper orthogonal decomposition (POD) for the prediction of flows in turbomachinery. To further reduce the computational time, the governing equations were written as a function of specific volume instead of density. This allowed for the pre-computation of the coefficients of the system of ordinary differential equations that describe the reduced-order model. A penalty method was developed to implement time-dependent boundary conditions and achieve a stable solution for the reduced-order model. Rotor 67 was used as a validation case for the reduced-order model, which was tested for both on- and off-reference conditions. This reduced-order model was shown to be more than 10,000 times faster than the full-order model.


2013 ◽  
Vol 136 (7) ◽  
Author(s):  
Yasharth Bhartiya ◽  
Alok Sinha

The results from a reduced order model based on frequency mistuning are compared with those from recently developed modified modal domain analysis (MMDA). For the academic bladed rotor considered in this paper, the frequency mistuning analysis is unable to capture the effects of geometric mistuning, whereas MMDA provides accurate estimates of natural frequencies, mode shapes, and forced response.


2003 ◽  
Vol 125 (3) ◽  
pp. 772-776 ◽  
Author(s):  
P. Marugabandhu ◽  
J. H. Griffin

A reduced-order model has been developed that can be used to accurately and quickly calculate the changes in the natural frequencies and mode shapes of a blade that are caused by centrifugal stiffening. It has been corroborated by comparisons with finite element analyses of a cantilevered tapered plate and with frequencies from a low aspect ratio fan blade.


Author(s):  
Thomas Maywald ◽  
Christoph R. Heinrich ◽  
Arnold Kühhorn ◽  
Sven Schrape ◽  
Thomas Backhaus

Abstract It is widely known that the vibration characteristics of blade integrated discs can dramatically change in the presence of manufacturing tolerances and wear. In this context, an increasing number of publications discuss the influence of the geometrical variability of blades on phenomena like frequency splitting and mode localization. This contribution is investigating the validity of a stiffness modified reduced order model for predicting the modal parameters of a geometrically mistuned compressor stage. In detail, the natural frequencies and mode shapes, as well as the corresponding mistuning patterns, are experimentally determined for an exemplary rotor. Furthermore, a blue light fringe projector is used to identify the geometrical differences between the actual rotor and the nominal blisk design. With the help of these digitization results, a realistic finite element model of the whole compressor stage is generated. Beyond that, a reduced order model is implemented based on the nominal design intention. Finally, the numerical predictions of the geometrically updated finite element model and the stiffness modified reduced order model are compared to the vibration measurement results. The investigation is completed by pointing out the benefits and limitations of the SNM-approach in the context of geometrically induced mistuning effects.


Author(s):  
P. Marugabandhu ◽  
J. H. Griffin

A reduced order model has been developed that can be used to accurately and quickly calculate the changes in the natural frequencies and mode shapes of a blade that are caused by centrifugal stiffening. It has been corroborated by comparisons with finite element analyses of a cantilevered tapered plate and with frequencies from a low aspect ratio fan blade.


Author(s):  
Hassen M. Ouakad ◽  
Mohammad I. Younis

In this paper, we present an investigation of the dynamics of electrically actuated carbon nanotubes (CNTs) resonators including the effect of their initial curvature due to fabrication (slack). A nonlinear arch model is used to simulate the motion of the slacked CNT. A reduced-order model using a multimode Galerkin procedure based on the mode shapes of the straight un-actuated CNTs is derived. The reduced-order model equations are integrated numerically with time to reveal the steady-state response of the CNT when actuated by a DC load superimposed to an AC harmonic load. A perturbation method, the method of multiple scales, is used to obtain analytically the forced vibration response due to DC and small AC loads for various slacked CNT. Results of the perturbation method are verified with those obtained by numerically integrating the reduced-order model equations. The effective nonlinearity of the CNT is calculated as function of the slack and the DC load while using a beam model for the CNTs showing a softening dominant behavior.


Author(s):  
Ahmad M. Bataineh ◽  
Mohammad I. Younis

We study the static and dynamic behavior of electrically actuated micromachined arches. First, we conduct experiments on micromachined polysilicon beams by driving them electrically and varying their amplitude and frequency of voltage loads. The results reveal several interesting nonlinear phenomena of jumps, hysteresis, and softening behaviors. Next, we conduct analytical and theoretical investigation to understand the experiments. First, we solve the Eigen value problem analytically. We study the effect of the initial rise on the natural frequency and mode shapes, and use a Galerkin-based procedure to derive a reduced order model, which is then used to solve both the static and dynamic responses. We use two symmetric modes in the reduced order model to have accurate and converged results. We use long time integration to solve the nonlinear ordinary differential equations, and then modify our model using effective length to match experimental results. To further improve the matching with the experimental data, we curve-fit the exact profile of the microbeam to match the experimentally measured profile and use it in the reduced-order model to generate frequency-response curves. Finally, we use another numerical technique, the shooting technique, to solve the nonlinear ordinary differential equations. By using shooting and the curve fitted function, we found that we get good agreement with the experimental data.


2020 ◽  
Vol 124 (1281) ◽  
pp. 1798-1818 ◽  
Author(s):  
S. Lee ◽  
H. Cho ◽  
H. Kim ◽  
S.-J. Shin

ABSTRACTThe aeroelastic phenomenon of limit-cycle oscillations (LCOs) is analysed using a projection-based reduced-order model (PROM) and Navier–Stokes computational fluid dynamics (CFD) in the time domain. The proposed approach employs incompressible Navier–Stokes CFD to construct the full-order model flow field. A proper orthogonal decomposition (POD) of the snapshot matrix is conducted to extract the POD modes and corresponding temporal coefficients. The POD modes are directly projected to the incompressible Navier–Stokes equation to reconstruct the flow field efficiently. The methodology is applied to a plunging cylinder and an aerofoil undergoing LCOs. This scheme decreases the computational time while preserving the capability to predict the flow field accurately. The ROM is capable of reducing the computational time by at least 70% while maintaining the discrepancy within 0.1%. The causes of LCOs are also investigated. The scheme can be used to analyse non-linear aeroelastic phenomena in the time domain with reduced computational time.


Sign in / Sign up

Export Citation Format

Share Document