Three-Dimensional Flow Separations in the Diffuser of a Steam Turbine Control Valve

Author(s):  
Manuel B. Clari ◽  
Thomas Polklas ◽  
Franz Joos

A test rig for Steam Turbine Control Valves is operated at the Laboratory of Turbomachinery of the Helmut-Schmidt-University in Hamburg. The control valve unit containing four independently operable valves is a mockup of a typical steam turbine design converted for the use of compressed air with a maximum of 4 bar. The investigations focus on the transient flow behavior and fluid-structure interaction in connection to valve lift and pressure ratio. Validated by the pressure measurements, transient CFD simulations have been conducted identifying the flow separation structures and the transient behavior of the flow inside the valve throat and diffuser in detail. Similar to published separation structures in compressor cascades the transonic flow inside the valve shows three-dimensional flow separation structures and vortices which can be identified by the two-dimensional streamlines on a plane with a constant and infinitesimal distance to the wall. Furthermore a transient development of these patterns can be identified.

1985 ◽  
Vol 107 (2) ◽  
pp. 436-448 ◽  
Author(s):  
M. J. Pierzga ◽  
J. R. Wood

An experimental investigation of the three-dimensional flow field through a low aspect ratio, transonic, axial-flow fan rotor has been conducted using an advanced laser anemometer (LA) system. Laser velocimeter measurements of the rotor flow field at the design operating speed and over a range of through flow conditions are compared to analytical solutions. The numerical technique used herein yields the solution to the full, three-dimensional, unsteady Euler equations using an explicit time-marching, finite volume approach. The numerical analysis, when coupled with a simplified boundary layer calculation, generally yields good agreement with the experimental data. The test rotor has an aspect ratio of 1.56, a design total pressure ratio of 1.629 and a tip relative Mach number of 1.38. The high spatial resolution of the LA data matrix (9 radial × 30 axial × 50 blade-to-blade) permits details of the transonic flow field such as shock location, turning distribution, and blade loading levels to be investigated an compared to analytical results.


2003 ◽  
pp. 120-124
Author(s):  
Carsten Westergaard ◽  
Henning Klank ◽  
Jürg P. Kutter

1967 ◽  
Vol 7 (04) ◽  
pp. 377-388 ◽  
Author(s):  
K.H. Coats ◽  
R.L. Nielsen ◽  
Mary H. Terhune ◽  
A.G. Weber

COATS, K.H., THE U. OF TEXAS, AUSTIN, TEX. NIELSEN, R.L., ESSO PRODUCTION RESEARCH CO., HOUSTON, TEX. MEMBERS AIME TERHUNE, MARY H., AMERICAN AIRLINES, TULSA, OKLA., WEBER, A.G., ESSO PRODUCTION RESEARCH CO., HOUSTON, TEX. MEMBER AIME Abstract Two computer-oriented techniques for simulating the three-dimensional flow behavior of two fluid phases in petroleum reservoirs were developed. Under the first technique the flow equations are solved to model three-dimensional flow in a reservoir. The second technique was developed for modeling flow in three-dimensional media that have sufficiently high permeability in the vertical direction so that vertical flow is not seriously restricted. Since this latter technique is a modified two-dimensional areal analysis, suitably structured three-dimensional reservoirs can be simulated at considerably lower computational expenses than is required using the three-dimensional analysis. A quantitative criterion is provided for determining when vertical communication is good enough to permit use of the modified two-dimensional areal analysis. The equations solved by both techniques treat both fluids as compressible, and, for gas-oil applications, provide for the evolution of dissolved gas. Accounted for are the effects of relative permeability, capillary pressure and gravity in addition to reservoir geometry and rock heterogeneity. Calculations are compared with laboratory waterflood data to indicate the validity of the analyses. Other results were calculated with both techniques which show the equivalence of the two solutions for reservoirs satisfying the vertical communication criterion. Introduction Obtaining the maximum profits from oil and gas reservoirs during all stages of depletion is the fundamental charge to the reservoir engineering profession. In recent years much quantitative assistance in evaluating field development programs has been goaded by computerized techniques for predicting reservoir flow behavior. Because of the spatially distributed and dynamic nature of producing operations, automatic optimization procedures, such as those now in use for planning refining operations, are not now available for planning reservoir development. However, present mathematical simulation techniques do furnish powerful means for making case studies to help in planning primary recovery operations and in selecting and timing supplemental recovery operations. A number of methods have been reported which simulate the flow of one, two or three fluid phases within porous media of one or two effective spatial dimensions. However, applying computer analyses to actual reservoirs have been limited mostly to two-dimensional areal or cross-sectional flow studies for two immiscible reservoir fluids. To obtain a three-dimensional picture of reservoir performance using such two-dimensional techniques, it has been necessary to interpret the calculations by combining somehow the results from essentially independent areal and cross-sectional studies. To the author's knowledge, the only other three-dimensional computational procedure, in addition to those presented here, was developed by Peaceman and Rachford to simulate the behavior of a laboratory waterflood. Two computational techniques which may be used to simulate three-dimensional flow of two fluid phases are described in this paper. The first method, called the "three-dimensional analysis", employs a fully three-dimensional mathematical model that treats simultaneously both the areal and cross-sectional aspects of reservoir flow. SPEJ P. 377ˆ


Sign in / Sign up

Export Citation Format

Share Document