scholarly journals Simulation of Three-Dimensional, Two-Phase Flow In Oil and Gas Reservoirs

1967 ◽  
Vol 7 (04) ◽  
pp. 377-388 ◽  
Author(s):  
K.H. Coats ◽  
R.L. Nielsen ◽  
Mary H. Terhune ◽  
A.G. Weber

COATS, K.H., THE U. OF TEXAS, AUSTIN, TEX. NIELSEN, R.L., ESSO PRODUCTION RESEARCH CO., HOUSTON, TEX. MEMBERS AIME TERHUNE, MARY H., AMERICAN AIRLINES, TULSA, OKLA., WEBER, A.G., ESSO PRODUCTION RESEARCH CO., HOUSTON, TEX. MEMBER AIME Abstract Two computer-oriented techniques for simulating the three-dimensional flow behavior of two fluid phases in petroleum reservoirs were developed. Under the first technique the flow equations are solved to model three-dimensional flow in a reservoir. The second technique was developed for modeling flow in three-dimensional media that have sufficiently high permeability in the vertical direction so that vertical flow is not seriously restricted. Since this latter technique is a modified two-dimensional areal analysis, suitably structured three-dimensional reservoirs can be simulated at considerably lower computational expenses than is required using the three-dimensional analysis. A quantitative criterion is provided for determining when vertical communication is good enough to permit use of the modified two-dimensional areal analysis. The equations solved by both techniques treat both fluids as compressible, and, for gas-oil applications, provide for the evolution of dissolved gas. Accounted for are the effects of relative permeability, capillary pressure and gravity in addition to reservoir geometry and rock heterogeneity. Calculations are compared with laboratory waterflood data to indicate the validity of the analyses. Other results were calculated with both techniques which show the equivalence of the two solutions for reservoirs satisfying the vertical communication criterion. Introduction Obtaining the maximum profits from oil and gas reservoirs during all stages of depletion is the fundamental charge to the reservoir engineering profession. In recent years much quantitative assistance in evaluating field development programs has been goaded by computerized techniques for predicting reservoir flow behavior. Because of the spatially distributed and dynamic nature of producing operations, automatic optimization procedures, such as those now in use for planning refining operations, are not now available for planning reservoir development. However, present mathematical simulation techniques do furnish powerful means for making case studies to help in planning primary recovery operations and in selecting and timing supplemental recovery operations. A number of methods have been reported which simulate the flow of one, two or three fluid phases within porous media of one or two effective spatial dimensions. However, applying computer analyses to actual reservoirs have been limited mostly to two-dimensional areal or cross-sectional flow studies for two immiscible reservoir fluids. To obtain a three-dimensional picture of reservoir performance using such two-dimensional techniques, it has been necessary to interpret the calculations by combining somehow the results from essentially independent areal and cross-sectional studies. To the author's knowledge, the only other three-dimensional computational procedure, in addition to those presented here, was developed by Peaceman and Rachford to simulate the behavior of a laboratory waterflood. Two computational techniques which may be used to simulate three-dimensional flow of two fluid phases are described in this paper. The first method, called the "three-dimensional analysis", employs a fully three-dimensional mathematical model that treats simultaneously both the areal and cross-sectional aspects of reservoir flow. SPEJ P. 377ˆ

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 504
Author(s):  
Zhou Yang ◽  
Jinbu Yin ◽  
Yangliang Lu ◽  
Zhiming Liu ◽  
Haoyu Yang ◽  
...  

Vortex drop shaft (VDS) spillways are eco-friendly hydraulic structures used for safely releasing flood. However, due to the complexity of the three-dimensional rotational flow and the lack of suitable measuring devices, current experimental work cannot interpret the flow behavior reliably inside the VDS spillway, consequently experimental and CFD study on a VDS spillway with an elliptical tangential inlet was conducted to further discern the interior three-dimensional flow behavior. Hydraulic characteristics such as wall pressure, swirl angle, annular hydraulic height and Froude number of the tapering section are experimentally obtained and acceptably agreed with the numerical prediction. Results indicated that the relative dimensionless maximum height of the standing wave falls off nearly linearly with the increasing Froude number. Nonlinear regression was established to give an estimation of the minimum air-core rate. The normalized height of the hydraulic jump depends on the flow phenomena of pressure slope. Simulated results sufficiently reveal the three-dimensional velocity field (resultant velocity, axial velocity, tangential velocity and radial velocity) with obvious regional and cross-sectional variations inside the vortex drop shaft. It is found that cross-sectional tangential velocity varies, resembling the near-cavity forced vortex and near-wall free vortex behavior. Analytic calculations for the cross-sectional pressure were developed and correlated well with simulated results.


1963 ◽  
Vol 16 (4) ◽  
pp. 620-632 ◽  
Author(s):  
D. J. Maull ◽  
L. F. East

The flow inside rectangular and other cavities in a wall has been investigated at low subsonic velocities using oil flow and surface static-pressure distributions. Evidence has been found of regular three-dimensional flows in cavities with large span-to-chord ratios which would normally be considered to have two-dimensional flow near their centre-lines. The dependence of the steadiness of the flow upon the cavity's span as well as its chord and depth has also been observed.


2017 ◽  
Vol 825 ◽  
pp. 631-650 ◽  
Author(s):  
Francesco Romanò ◽  
Arash Hajisharifi ◽  
Hendrik C. Kuhlmann

The topology of the incompressible steady three-dimensional flow in a partially filled cylindrical rotating drum, infinitely extended along its axis, is investigated numerically for a ratio of pool depth to radius of 0.2. In the limit of vanishing Froude and capillary numbers, the liquid–gas interface remains flat and the two-dimensional flow becomes unstable to steady three-dimensional convection cells. The Lagrangian transport in the cellular flow is organised by periodic spiralling-in and spiralling-out saddle foci, and by saddle limit cycles. Chaotic advection is caused by a breakup of a degenerate heteroclinic connection between the two saddle foci when the flow becomes three-dimensional. On increasing the Reynolds number, chaotic streamlines invade the cells from the cell boundary and from the interior along the broken heteroclinic connection. This trend is made evident by computing the Kolmogorov–Arnold–Moser tori for five supercritical Reynolds numbers.


2020 ◽  
Vol 407 ◽  
pp. 109239
Author(s):  
José Miguel Pérez ◽  
Soledad Le Clainche ◽  
José Manuel Vega

1968 ◽  
Vol 72 (686) ◽  
pp. 171-177 ◽  
Author(s):  
John H. Neilson ◽  
Alastair Gilchrist ◽  
Chee K. Lee

This work deals with theoretical aspects of thrust vector control in rocket nozzles by the injection of secondary gas into the supersonic region of the nozzle. The work is concerned mainly with two-dimensional flow, though some aspects of three-dimensional flow in axisymmetric nozzles are considered. The subject matter is divided into three parts. In Part I, the side force produced when a physical wedge is placed into the exit of a two-dimensional nozzle is considered. In Parts 2 and 3, the physical wedge is replaced by a wedge-shaped “dead water” region produced by the separation of the boundary layer upstream of a secondary injection port. The modifications which then have to be made to the theoretical relationships, given in Part 1, are enumerated. Theoretical relationships for side force, thrust augmentation and magnification parameter for two- and three-dimensional flow are given for secondary injection normal to the main nozzle axis. In addition, the advantages to be gained by secondary injection in an upstream direction are clearly illustrated. The theoretical results are compared with experimental work and a comparison is made with the theories of other workers.


1995 ◽  
Vol 8 (6) ◽  
pp. 915-923 ◽  
Author(s):  
Laurence N. Bohs ◽  
Barry H. Friemel ◽  
Joseph Kisslo ◽  
Daniel T. Harfe ◽  
Kathryn R. Nightingale ◽  
...  

Author(s):  
X. Liu ◽  
J. S. Marshall

A computational study is reported that examines the transient growth of three-dimensional flow features for nominally parallel vortex-cylinder interaction problems. We consider a helical vortex with small-amplitude perturbations that is advected onto a circular cylinder whose axis is parallel to the nominal vortex axis. The study assesses the applicability of the two-dimensional flow assumption for parallel vortex-body interaction problems in which the body impinges on the vortex core. The computations are performed using an unstructured finite-volume method for an incompressible flow, with periodic boundary conditions along the cylinder axis. Growth of three-dimensional flow features is quantified by use of a proper-orthogonal decomposition of the Fourier-transformed velocity and vorticity fields in the cylinder azimuthal and axial directions. The interaction is examined for different axial wavelengths and amplitudes of the initial helical waves on the vortex core, and the results for cylinder force are compared to the two-dimensional results. The degree of perturbation amplification as the vortex approaches the cylinder is quantified and shown to be mostly dependent on the dominant axial wavenumber of the perturbation. The perturbation amplification is observed to be greatest for perturbations with axial wavelength of about 1.5 times the cylinder diameter.


2003 ◽  
pp. 120-124
Author(s):  
Carsten Westergaard ◽  
Henning Klank ◽  
Jürg P. Kutter

1968 ◽  
Vol 72 (687) ◽  
pp. 267-274
Author(s):  
John H. Neilson ◽  
Alastair Gilchrist ◽  
Chee K. Lee

Summary:This work is concerned with the side force produced in rocket nozzles by secondary gas injection. A new theory for determining the side force is presented for two-dimensional flow and this is considered to be an important step towards a theory applicable to three-dimensional flow. The proposed theory is based on a double wedge model for the separated region upstream of the secondary port. The principal feature of the model is that it accounts tor the fact that the angle of the shock wave, originating from the separated region, is observed to increase with increase in secondary mass flow rate. Theoretical side force results are shown to compare favourably with experimental results obtained using two-dimensional nozzles and a comparison is made between the proposed theory and the theories of other workers.


Sign in / Sign up

Export Citation Format

Share Document