Laminar Burning Velocity and Markstein Length Characterisation of Compositionally Dynamic Blast Furnace Gas

Author(s):  
Daniel Pugh ◽  
Tim O’Doherty ◽  
Anthony Griffiths ◽  
Philip Bowen ◽  
Andrew Crayford ◽  
...  

Blast Furnace Gas is a poor quality process gas comprising proportions of CO, H2, CO2, and N2, with a low energy density typically in the order of 3 MJ·kg−1. Produced in large quantities as a by-product of blast furnace iron making, it is one of the process gases indigenous to integrated steelworks worldwide. The inherently dynamic nature of furnace operation causes compositional variation and therefore leads to fluctuation in the fuel characteristics, often dissuading engineers from fully utilising the gas in increasingly complex and efficient technologies such as gas turbines. Characterisation studies were undertaken in a new constant volume bomb to determine the sensitivity to change in laminar burning velocity and Markstein length experienced as a result of increasing the volumetric H2 fraction in the range of 1–7%. Experiments were performed by measuring outwardly propagating spherical flame evolution, recorded using a Schlieren flame visualisation technique for a range of equivalence ratios, and processed using nonlinear data analysis. The relative performance of the experimental technique was benchmarked against other works using well-investigated CH4 and yielded results in good agreement with published values. Peak laminar burning velocity was shown to increase by a factor of approximately 3.5 over the tested range, with H2 concentration and equivalence ratio shown to greatly influence the effect of flame stretch. Comparisons of results were also made with values obtained from different reaction mechanisms employed using the PREMIX code developed by Sandia National Laboratories.

Author(s):  
Daniel Pugh ◽  
Andrew Crayford ◽  
Philip Bowen ◽  
Tim O’Doherty ◽  
Richard Marsh

An outwardly propagating spherical flame has been used to characterise the influence of water addition on the combustion of variable steelworks gas compositions. Attention was given to the ratio of hydrogen and carbon monoxide within blast furnace gas, and the catalysing influence of water addition on the preponderant reaction kinetics. A nonlinear extrapolative technique was used to obtain values of laminar burning velocity and Markstein length for atmospheric combustion with air and change in equivalence ratio. Four disparate blast furnace gas mixtures were tested with increasing volumetric proportions of hydrogen in the range of one to seven percent, displacing other constituent fractions. A non-monotonic influence was observed, with propagation accelerated for compositions comprising smaller amounts of hydrogen, and the cooling impact of water addition shown to slow faster burning flames. Water addition was also shown to increase the effects of flame stretch on observed propagation rates, and the contrasting influences resulting from vapour fraction are discussed with respect to practical combustion instability, in addition to alternative synthesised fuels. Numerically modelled results were generated using the PREMIX coded CHEMKIN-PRO, and the performance of specified chemical reaction mechanisms evaluated in relation to the obtained experimental data.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 996
Author(s):  
Venera Giurcan ◽  
Codina Movileanu ◽  
Adina Magdalena Musuc ◽  
Maria Mitu

Currently, the use of fossil fuels is very high and existing nature reserves are rapidly depleted. Therefore, researchers are turning their attention to find renewable fuels that have a low impact on the environment, to replace these fossil fuels. Biogas is a low-cost alternative, sustainable, renewable fuel existing worldwide. It can be produced by decomposition of vegetation or waste products of human and animal biological activity. This process is performed by microorganisms (such as methanogens and sulfate-reducing bacteria) by anaerobic digestion. Biogas can serve as a basis for heat and electricity production used for domestic heating and cooking. It can be also used to feed internal combustion engines, gas turbines, fuel cells, or cogeneration systems. In this paper, a comprehensive literature study regarding the laminar burning velocity of biogas-containing mixtures is presented. This study aims to characterize the use of biogas as IC (internal combustion) engine fuel, and to develop efficient safety recommendations and to predict and reduce the risk of fires and accidental explosions caused by biogas.


Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122149
Author(s):  
Ryuhei Kanoshima ◽  
Akihiro Hayakawa ◽  
Takahiro Kudo ◽  
Ekenechukwu C. Okafor ◽  
Sophie Colson ◽  
...  

Fuel ◽  
2021 ◽  
Vol 289 ◽  
pp. 119761
Author(s):  
Yu Liu ◽  
Jinduo Wang ◽  
Wu Gu ◽  
Hongan Ma ◽  
Wen Zeng

Sign in / Sign up

Export Citation Format

Share Document