scholarly journals Physics of Vibrating Airfoils at Low Reduced Frequency

Author(s):  
Almudena Vega ◽  
Roque Corral

The unsteady aerodynamics of low pressure turbine vibrating airfoils in flap mode is studied in detail using a frequency domain linearized Navier-Stokes solver. Both the travelling-wave and influence coefficient formulations of the problem are used to highlight key aspects of the physics and understand different trends such as the effect of reduced frequency and Mach number. The study is focused in the low-reduced frequency regime which is of paramount relevance for the design of aeronautical low-pressure turbines and compressors. It is concluded that the effect of the Mach number on the unsteady pressure phase can be neglected in first approximation and that the unsteadiness of the vibrating and adjacent airfoils is driven by vortex shedding mechanisms. Finally a simple model to estimate the work-per-cycle as a function of the reduced frequency and Mach Number is provided. The edge-wise and torsion modes are presented in less detail but it is shown that acoustic waves are essential to explain its behaviour. The non-dimensional work-per-cycle of the edge-wise mode shows a large dependence with the Mach number while in the torsion mode a large number of airfoils is needed to reconstruct the work-per-cycle departing from the influence coefficients.

Author(s):  
Almudena Vega ◽  
Roque Corral

This paper studies the unsteady aerodynamics of vibrating airfoils in the low reduced frequency regime with special emphasis in its impact on the scaling of the work per cycle curves using an asymptotic approach (Part I) and numerical simulations. A perturbation analysis of the linearized Navier-Stokes equations at low reduced frequency is presented and some conclusions are drawn (Part I of the corresponding paper). The first important result is that the loading of the airfoil plays an essential role in the trends of the phase and modulus of the unsteady pressure field caused by the vibration of the airfoil. For lightly loaded airfoils the unsteady pressure and the influence coefficients scale linearly with the reduced frequency whereas the phase departs from π/2 and changes linearly with the reduced frequency. As a consequence the work-per-cycle is proportional to the reduced frequency for any inter-blade phase angle and it is independent of its sign. For highly loaded airfoils the unsteady pressure modulus is fairly constant exhibiting only a small correction with the reduced frequency, while the phase departs from zero varies linearly with it. In this case only the mean value of the work-per-cycle scales linearly with the reduced frequency. This behavior is independent of the geometry of the airfoil and in first approximation of the mode-shape. For symmetric cascades the work-per-cycle scales linearly with the reduced frequency irrespectively of whether the airfoil is loaded or not. Simulations using a frequency domain linearized Navier-Stokes solver have been carried out on a low-pressure turbine airfoil section, the NACA0012 and NACA65 profiles and a flat plate operating at different flow conditions to show the generality and correctness of the analytical conclusions. Both the traveling-wave and influence coefficient formulations of the problem are used in combination to increase the understanding and explore the nature of the unsteady pressure perturbations.


Author(s):  
Roque Corral ◽  
Almudena Vega

This paper studies the unsteady aerodynamics of vibrating airfoils in the low reduced frequency regime with special emphasis in its impact on the scaling of the work per cycle curves using an asymptotic approach (Part I) and numerical simulations (Part II). A perturbation analysis of the linearized Navier-Stokes equations for real modes at low reduced frequency is presented and some conclusions are drawn. The first important result is that the loading of the airfoil plays an essential role in the trends of the phase and modulus of the unsteady pressure caused by the vibration of the airfoil. For lightly loaded airfoils the unsteady pressure and the influence coefficients scale linearly with the reduced frequency whereas the phase departs from π/2 and changes linearly with the reduced frequency. As a consequence the work-per-cycle scales linearly with the reduced frequency for any inter-blade phase angle and it is independent of its sign. For highly loaded airfoils the unsteady pressure modulus is fairly constant exhibiting only a small correction with the reduced frequency, while the phase departs from zero and varies linearly with it. In this case only the mean value of the work-per-cycle scales linearly with the reduced frequency. This behavior is independent of the geometry of the airfoil and the modeshape in first approximation. For symmetric cascades the work-per-cycle scales linearly with the reduced frequency irrespectively of whether the airfoil is loaded or not. Simulations using a frequency domain linearized Navier-Stokes solver have been carried out on a low-pressure turbine airfoil section, the NACA0012 and NACA65 profiles and a flat plate to show the generality and correctness of the analytical conclusions (Part II of the corresponding paper). Both, the traveling-wave and influence coefficient formulations of the problem are used in combination to increase the understanding and explore the nature of the unsteady pressure perturbations.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Almudena Vega ◽  
Roque Corral

This paper numerically investigates the correlation between the so-called unsteady loading parameter (ULP), derived in Part I of the corresponding paper, and the unsteady aerodynamics of oscillating airfoils at low reduced frequency with special emphasis on the work-per-cycle curves. Simulations using a frequency-domain linearized Navier–Stokes solver have been carried out on rows of a low-pressure turbine airfoil section, the NACA65 section, and a flat plate, to show the correlation between the actual value of the ULP and the flutter characteristics, for different airfoils, operating conditions, and mode shapes. Both the traveling wave and influence coefficient formulations of the problem are used in combination to increase the understanding of the ULP influence in different aspects of the unsteady flow field. It is concluded that, for a blade vibrating in a prescribed motion at design conditions, the ULP can quantitatively predict the effect of unsteady loading variations due to changes in both the incidence and the mode shape on the work-per-cycle curves. It is also proved that the unsteady loading parameter can be used to qualitatively compare the flutter characteristics of different airfoils.


Author(s):  
Almudena Vega ◽  
Roque Corral

This paper studies the unsteady aerodynamics of vibrating airfoils in the low reduced frequency regime with special emphasis on its impact on the work per cycle curves. Simulations using a frequency domain linearized Navier-Stokes solver have been carried out on rows of a low-pressure turbine airfoil section, the NACA65 section and a flat plate, to show the correlation between the actual value of the unsteady loading parameter (ULP), theoretically derived in Part IIIa, and the flutter characteristics, for different airfoils, operating conditions and mode-shapes. Both, the traveling-wave and influence coefficient formulations of the problem are used in combination to increase the understanding of the ULP influence in different aspects of the unsteady flowfield. It is concluded that, for a blade vibrating in a prescribed motion at design conditions, the ULP can quantitatively predict the effect of loading variations due to changes in the incidence, and also in the mode shape. It is also proved that the unsteady loading parameter can be used to compare the flutter characteristics of different airfoils.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Roque Corral ◽  
Almudena Vega

This paper studies the unsteady aerodynamics of vibrating airfoils in the low reduced frequency regime with special emphasis on its impact on the scaling of the work-per-cycle curves, using an asymptotic approach. A perturbation analysis of the linearized Navier–Stokes equations for real modes at low reduced frequency is presented and some conclusions are drawn. The first important result is that the loading of the airfoil plays an essential role in the trends of the phase and modulus of the unsteady pressure caused by the vibration of the airfoil. For lightly loaded airfoils, the unsteady pressure and the influence coefficients (ICs) scale linearly with the reduced frequency whereas the phase departs from π/2 and changes linearly with the reduced frequency. As a consequence, the work-per-cycle scales linearly with the reduced frequency for any interblade phase angle (IBPA), and it is independent of its sign. For highly loaded airfoils, the unsteady pressure modulus is fairly constant exhibiting only a small correction with the reduced frequency, while the phase departs from zero and varies linearly with it. In this case, only the mean value of the work-per-cycle scales linearly with the reduced frequency. This behavior is independent of the geometry of the airfoil and the mode shape in first-order approximation in the reduced frequency. For symmetric cascades, the work-per-cycle scales linearly with the reduced frequency irrespective of whether the airfoil is loaded or not. These conclusions have been numerically confirmed in Part II of the paper.


Author(s):  
Joshua J. Waite ◽  
Robert E. Kielb

Successful, efficient turbine design requires a thorough understanding of the underlying physical phenomena. This paper investigates the flutter phenomenon of low pressure turbine (LPT) blades seen in aircraft engines and power turbines. Computational fluid dynamics (CFD) analysis will be conducted in a two-dimensional (2D) sense using a frequency domain Reynolds-averaged Navier—Stokes (RANS) solver on a publicly available LPT airfoil geometry: École Polytechnique Fédérale De Lausanne (EPFL's) Standard Configuration 4. An emphasis is placed on revealing the underlying physics behind the threatening LPT flutter mechanism. To this end, flutter sensitivity analysis is conducted on three key parameters: reduced frequency, mode shape, and Mach number. Additionally, exact 2D acoustic resonance interblade phase angles (IBPAs) are analytically predicted as a function of reduced frequency. Made evident via damping versus IBPA plots, the CFD model successfully captures the theoretical acoustic resonance predictions. Studies of the decay of unsteady aerodynamic influence coefficients away from a reference blade are also presented. The influence coefficients provide key insights to the harmonic content of the unsteady pressure field. Finally, this work explores methods of normalizing the work per cycle by the exit dynamic pressure.


Author(s):  
K. Vogel ◽  
A. D. Naidu ◽  
M. Fischer

The prediction of aerodynamic damping is a key step towards high fidelity forced response calculations. Without the knowledge of absolute damping values, the resulting stresses from forced response calculations are often afflicted with large uncertainties. In addition, with the knowledge of the aerodynamic damping the aeroelastic contribution to mistuning can be considered. The first section of this paper compares two methods of one-way-coupled aerodynamic damping computations on an axial turbine. Those methods are: the aerodynamic influence coefficient, and the travelling wave mode method. Excellent agreement between the two methods is found with significant differences in required computational time. The average deviation between all methods for the transonic turbine is 4%. Additionally, the use of transient blade row methods with phase lagged periodic boundaries are investigated and the influence of periodic boundaries on the aerodynamic influence coefficients are assessed. A total of 23 out of 33 passages are needed to remove all influence from the periodic boundaries for the present configuration. The second part of the paper presents the aerodynamic damping calculations for a centrifugal compressor. Simulations are predominantly performed using the aerodynamic influence coefficient approach. The influence of the periodic boundaries and the recirculation channel is investigated. All simulations are performed on a modern turbocharger turbine and centrifugal compressor using ANSYS CFX V17.0 with an inhouse pre- and post-processing procedure at ABB Turbocharging. The comparison to experimental results concludes the paper.


2011 ◽  
Vol 21 (01) ◽  
pp. 7-27 ◽  
Author(s):  
EDUARD FEIREISL

We study the singular limit of the compressible Navier–Stokes system in the whole space ℝ3, where the Mach number and Froude number are proportional to a small parameter ε → 0. The central issue is the local decay of the acoustic energy proved by means of the RAGE theorem. The result is quite general and the proposed approach can be applied to a large variety of problems that concern propagation of acoustic waves in compressible fluids. In particular, the method can be used for showing stability of various numerical schemes based on the so-called hybrid methods.


Author(s):  
T. H. Fransson

A two-dimensional section of the last stage of a steam turbine has been investigated experimentally in an annular non-rotating cascade facility as regards to its steady-state and time-dependent aerodynamic characteristics at design and off-design conditions. The unsteady experimental data obtained with the blades vibrating in the “travelling wave” mode indicate that one of the main reasons for the flutter susceptibility of the cascade lies in the high expansion and following shock wave close to the blade suction surface leading edge and the corresponding high unsteady loading. The decomposition of the experimental data into unsteady aerodynamic influence coefficients validates this conclusion and gives also that another reason for the flutter susceptibility can be found in the fact that the cascade is overlapped for a part of the blade surface where the local flow velocities are close to sonic. The unsteady aerodynamic influence coefficients show that the instability arises because of the time dependent aerodynamic coupling effects between, essentially, the reference blade and its immediate suction surface and, to a lesser extent, pressure surface neighbors.


Author(s):  
Josef Panovsky ◽  
Robert E. Kielb

A design approach to avoid flutter of low pressure turbine blades in aircraft engines is described. A linearized Euler analysis, previously validated using experimental data, is used for a series of parameter studies. The influence of mode shape and reduced frequency are investigated. Mode shape is identified as the most important contributor to determining the stability of a blade design. A new stability parameter is introduced to gain additional insight into the key contributors to flutter. This stability parameter is derived from the influence coefficient representation of the cascade, and includes only contributions from the reference blade and its immediate neighbors. This has the effect of retaining the most important contributions to aerodynamic damping while filtering out terms of less significance. This parameter is utilized to develop a stability map, which provides the critical reduced frequency as a function of torsion axis location. Rules for preliminary design and procedures for detailed design analysis are defined.


Sign in / Sign up

Export Citation Format

Share Document