Effects of Wet Compression on the Flow Behavior of a Centrifugal Compressor: A CFD Analysis

Author(s):  
Anish Surendran ◽  
Heuy Dong Kim

Wet compression has been emerging as a prominent method for augmenting net power output from land based gas turbine engine. It is proven more effective than the conventional inlet cooling methods. In this method, fine water droplets are injected just upstream of the compressor impeller. These water droplets absorb the latent heat of evaporation during the compression process of gas-water droplet two-phase flow, consequently reducing the temperature rise. Many gas turbine engineers have performed the feasibility and usefulness studies on this wet compression, but physical understanding on the wet compression process is highly lacking, and related compression flow mechanism remains ambiguous. In the present study, a computational fluid dynamics method has been applied to investigate the wet compression effects on a low speed centrifugal compressor. A Langrangian particle tracking method was employed to simulate the air-water droplet two-phase flow. The power saving achieved with different injection ratio of water droplets has been calculated and it is found that significant saving can be obtained with a water droplet injection ratio of above 3%. The vapor mass fraction varies linearly along the streamwise direction, making the assumption for a constant evaporation rate is valid. With the increase in the injection ratio the polytropic index for compression is coming down. The diffuser pressure recovery has been improved significantly with the wet compression; while the total pressure ratio across the impeller does not improve much. Contrary to the expectation, the evaporation rate is found to be coming down with the increase in the compressor mass flow rate. It is observed that the operating point, at which the peak pressure ratio occurs, shift towards higher mass flow rate during wet compression due to the local recirculation region within the vaneless space between the impeller and diffuser.

Author(s):  
M. Bianchi ◽  
F. Melino ◽  
A. Peretto ◽  
P. R. Spina ◽  
S. Ingistov

In the last years, among all different gas turbine inlet air cooling techniques, an increasing attention to fogging approach is dedicated. The various fogging strategies seem to be a good solution to improve gas turbine or combined cycle produced power with low initial investment cost and less installation downtime. In particular, overspray fogging and interstage injection involve two-phase flow consideration and water evaporation during compression process (also known as wet compression). According to the Author’s knowledge, the field of wet compression is not completely studied and understood. In the present paper, all the principal aspects of wet compression and in particular the influence of injected water droplet diameter and surface temperature, and their effect on gas turbine performance and on the behavior of the axial compressor (change in axial compressor performance map due to the water injection, redistribution of stage load, etc.) are analyzed by using a calculation code, named IN.FO.G.T.E. (INterstage FOgging Gas Turbine Evaluation), developed and validated by the Authors.


Author(s):  
Qun Zheng ◽  
Yufeng Sun ◽  
Shuying Li ◽  
Yunhui Wang

Thermodynamic model of wet compression process is established in this paper. The topics of ideal wet compression process, actual wet compression process, water droplet evaporative rate, wet compression work, inlet evaporative cooling, concept of wet compression efficiency, aerodynamic breaking of water droplets etc. are investigated and discussed in this paper.


Author(s):  
M. Bagnoli ◽  
M. Bianchi ◽  
F. Melino ◽  
A. Peretto ◽  
P. R. Spina ◽  
...  

In recent years, among various available inlet air cooling techniques for gas turbine power enhancement, high pressure fogging has seen an increasing attention mainly because of its comparatively low initial investment cost and less downtime for its installation. The various fogging strategies such as inlet evaporative, overspray (or wet compression) and interstage injection have been implemented in simple and combined cycle applications. Unlike wet compression, air at the compressor inlet is not fully saturated with the interstage injection. However, both wet compression and interstage injection involve multi-phase flow and water evaporation during the compression process. The phenomenon of two phase flow compression in axial compressor is not yet fully understood. This paper investigates effects of interstage injection on the performance of a GE Frame 7EA gas turbine using aero-thermodynamic modeling. In addition to estimating the overall gas turbine performance changes achievable with the interstage injection approach, the study presented here discusses impact of interstage injection on the stage-by-stage compressor performance characteristics of the selected gas turbine. The plausible reasons for the observed performance changes are discussed.


2003 ◽  
Vol 125 (3) ◽  
pp. 489-496 ◽  
Author(s):  
Qun Zheng ◽  
Yufeng Sun ◽  
Shuying Li ◽  
Yunhui Wang

Thermodynamic model of wet compression process is established in this paper. The topics of ideal wet compression process, actual wet compression process, water droplet evaporative rate, wet compression work, inlet evaporative cooling, concept of wet compression efficiency, aerodynamic breaking of water droplets etc. are investigated and discussed in this paper.


ACS Omega ◽  
2020 ◽  
Vol 5 (41) ◽  
pp. 26955-26955
Author(s):  
Hongwen Luo ◽  
Beibei Jiang ◽  
Haitao Li ◽  
Ying Li ◽  
Zhangxin Chen

2014 ◽  
Vol 1 (4) ◽  
pp. TEP0019-TEP0019 ◽  
Author(s):  
Jun-ichi TAKANO ◽  
Hideaki MONJI ◽  
Akiko KANEKO ◽  
Yutaka ABE ◽  
Hiroyuki YOSHIDA ◽  
...  

Author(s):  
Nan Liang ◽  
Changqing Tian ◽  
Shuangquan Shao

As one kind of fluid machinery related to the two-phase flow, the refrigeration system encounters more problems of instability. It is essential to ensure the stability of the refrigeration systems for the operation and efficiency. This paper presents the experimental investigation on the static and dynamic instability in an evaporator of refrigeration system. The static instability experiments showed that the oscillatory period and swing of the mixture-vapor transition point by observation with a camera through the transparent quartz glass tube at the outlet of the evaporator. The pressure drop versus mass flow rate curves of refrigerant two phase flow in the evaporator were obtained with a negative slope region in addition to two positive slope regions, thus making the flow rate a multi-valued function of the pressure drop. For dynamic instabilities in the evaporation process, three types of oscillations (density wave type, pressure drop type and thermal type) were observed at different mass flow rates and heat fluxes, which can be represented in the pressure drop versus mass flow rate curves. For the dynamic instabilities, density wave oscillations happen when the heat flux is high with the constant mass flow rate. Thermal oscillations happen when the heat flux is correspondingly low with constant mass flow rate. Though the refrigeration system do not have special tank, the accumulator and receiver provide enough compressible volume to induce the pressure drop oscillations. The representation and characteristic of each oscillation type were also analyzed in the paper.


2021 ◽  
Vol 2097 (1) ◽  
pp. 012027
Author(s):  
Zhongxin Liu ◽  
Zhiliang Wang ◽  
Chao Wang ◽  
Jinsong Zhang

Abstract This paper novel designed the local convergence configuration in the coaxial channels to study the two-phase flow (lubricating oil (continuous phase, flow rate Q c)/deionized water (dispersed phase, flow rate Q d)). Two geometric control variables, the relative position (x) and tapering characteristics (α), had the different effects on the droplet formation. The increase of relative position x caused the higher frequency and finer droplets, and the increase of convergence angle α, took the opposite effects. The results indicated that the equivalent dimensionless droplet length Ld/Wout and the flow rate ratio Qd/Qc had an exponential relationship of about 1/2. Similarly, it was found that the dispersed droplets generating frequency and the two-phase capillary number, CaTP = uTPμc/σ, had an exponential relationship. The advantage of the convergent configurations in micro-channel was the size and efficiency of droplet generation was very favorable to be controlled by α and x.


Sign in / Sign up

Export Citation Format

Share Document