Thermodynamic Analyses of Wet Compression Process in the Compressor of Gas Turbine

2003 ◽  
Vol 125 (3) ◽  
pp. 489-496 ◽  
Author(s):  
Qun Zheng ◽  
Yufeng Sun ◽  
Shuying Li ◽  
Yunhui Wang

Thermodynamic model of wet compression process is established in this paper. The topics of ideal wet compression process, actual wet compression process, water droplet evaporative rate, wet compression work, inlet evaporative cooling, concept of wet compression efficiency, aerodynamic breaking of water droplets etc. are investigated and discussed in this paper.

Author(s):  
Qun Zheng ◽  
Yufeng Sun ◽  
Shuying Li ◽  
Yunhui Wang

Thermodynamic model of wet compression process is established in this paper. The topics of ideal wet compression process, actual wet compression process, water droplet evaporative rate, wet compression work, inlet evaporative cooling, concept of wet compression efficiency, aerodynamic breaking of water droplets etc. are investigated and discussed in this paper.


Author(s):  
M. Bianchi ◽  
F. Melino ◽  
A. Peretto ◽  
P. R. Spina ◽  
S. Ingistov

In the last years, among all different gas turbine inlet air cooling techniques, an increasing attention to fogging approach is dedicated. The various fogging strategies seem to be a good solution to improve gas turbine or combined cycle produced power with low initial investment cost and less installation downtime. In particular, overspray fogging and interstage injection involve two-phase flow consideration and water evaporation during compression process (also known as wet compression). According to the Author’s knowledge, the field of wet compression is not completely studied and understood. In the present paper, all the principal aspects of wet compression and in particular the influence of injected water droplet diameter and surface temperature, and their effect on gas turbine performance and on the behavior of the axial compressor (change in axial compressor performance map due to the water injection, redistribution of stage load, etc.) are analyzed by using a calculation code, named IN.FO.G.T.E. (INterstage FOgging Gas Turbine Evaluation), developed and validated by the Authors.


Author(s):  
Rongkai Zhu ◽  
Qun Zheng ◽  
Guoqiang Yue ◽  
Rakesh Bhargava

Concerned with the influence of the size of water droplets on the effect of wet compression, it is important to control the size of water droplets among 5–10 microns or smaller, for this purpose an experimental work is carried out by improve the surface behavior of water aiming to reduce its surface tension. Non-ionic surfactants and its combination were employed to reach such an aim. The surface tension of water was reduced from 72.9mN/m to 41.2mN/m or even lower depending on the cost. It offers a possible way to refine spray, and ready to use in wet compression process.


Author(s):  
Anish Surendran ◽  
Heuy Dong Kim

Wet compression has been emerging as a prominent method for augmenting net power output from land based gas turbine engine. It is proven more effective than the conventional inlet cooling methods. In this method, fine water droplets are injected just upstream of the compressor impeller. These water droplets absorb the latent heat of evaporation during the compression process of gas-water droplet two-phase flow, consequently reducing the temperature rise. Many gas turbine engineers have performed the feasibility and usefulness studies on this wet compression, but physical understanding on the wet compression process is highly lacking, and related compression flow mechanism remains ambiguous. In the present study, a computational fluid dynamics method has been applied to investigate the wet compression effects on a low speed centrifugal compressor. A Langrangian particle tracking method was employed to simulate the air-water droplet two-phase flow. The power saving achieved with different injection ratio of water droplets has been calculated and it is found that significant saving can be obtained with a water droplet injection ratio of above 3%. The vapor mass fraction varies linearly along the streamwise direction, making the assumption for a constant evaporation rate is valid. With the increase in the injection ratio the polytropic index for compression is coming down. The diffuser pressure recovery has been improved significantly with the wet compression; while the total pressure ratio across the impeller does not improve much. Contrary to the expectation, the evaporation rate is found to be coming down with the increase in the compressor mass flow rate. It is observed that the operating point, at which the peak pressure ratio occurs, shift towards higher mass flow rate during wet compression due to the local recirculation region within the vaneless space between the impeller and diffuser.


2017 ◽  
Vol 374 ◽  
pp. 131-147
Author(s):  
Gambo Kofar Bai Dayyabu ◽  
Hai Zhang ◽  
Qun Zheng ◽  
Salman Abdu

Wet compression process has been widely accepted as a measure of increasing the performance of industrial gas turbine, in the present work, in-depth analysis on the principle aspects of wet compression, more specifically, the influence of injected water droplets diameter, surface temperature, and their effects on the behavior of axial flow transonic compressor and gas turbine performance were analyzed using computational fluid dynamic. Injected water droplets and gas flow phase change was most intense in the area adjacent to shockwaves and were the slip velocity of the droplet is highest. Water injection in to the compressor rotor is a little perturbation to the flow field due to the formation of flow separation, evaporation rate, increasing weber number, reduction in the inlet temperature, and velocity vortex pattern relatively different from that of the dry case. The effects of water droplets on the rotor region at injection rate of 1%, shows decrease in the inlet temperature of 11%, outlet temperature 5% and uplift the efficiency to 1.5%.


Author(s):  
Hai Zhang ◽  
Xiaojiang Tian ◽  
Xiaojun Pan ◽  
Jie Zhou ◽  
Qun Zheng

In process of wet compression, gas turbine engine will ingest a certain amount of water, which can influence the overall performance of the engine. This phenomenon is particularly significant in the cleaning process of industrial gas turbine and water injection of aero-engine. When the quantity of water ingestion is quite large, the performance of gas turbine will appear deterioration and may lead to flameout, power reduce or even shutdown of the engine, causing accidents. Water droplets will be accumulated on the blade surface where water films could be formed on pressure surface in the wet compression process. The effects of water film on gas turbine engines are aerodynamic, thermodynamic and mechanical. The above-mentioned effects occur simultaneously and be affected by each other. Considering the above effects and the fact that they are time dependent, there are few gas turbine performance researches, which take into account the water film phenomenon. This study is a new research of investigating theoretically the water film effects on a gas turbine performance. It focuses on the aerodynamic and thermodynamic effects of the phenomenon on the compressor stage. The computation of water film thickness, which frequently be formed on the surface of compressor blade, its movement and extra torque demand, are provided by a simulation model of the code. Considering the change in blade’s profile and the thickness feature of the water film, the compressor stage’s performance deterioration is analyzed. In addition to this, movement and the formation of the water film on a compressor stage are simulated and analyzed by using unsteady numerical methods under different water injecting conditions in this paper. The movement characteristics of water droplets in compressor passage are investigated to understand the flow mechanisms responsible for water film formation process. The forming and the tearing process of water film on blade surface are analyzed at different injection conditions. For simulating the real situation, The maximum quantity of injected water can reach 12%. The results indicate that continuity and region of the water film on the blade surface will be developed with the increment of droplet size and injection rate. It is also found that the flow losses near blade surface increases with the tearing process of water film due to the increment of surface roughness.


Author(s):  
Richard R. Trewin

An evaporative cooling system for lowering the inlet temperature of a gas-turbine compressor is described. This system uses the latent enthalpy of evaporation for injected water droplets to decrease the enthalpy of the air. The requirements for compatible operation between this system and the compressor are given.


Author(s):  
Ting Wang ◽  
Jobaidur R. Khan

Gas turbine (GT) inlet fogging and overspray (high-fogging) have been considered the most cost-effective means of boosting a GT's total power output, especially under hot or dry weather conditions. The result of employing fogging or overspray is indisputably clear—total power output is increased; however, development of the theory and explanation of the phenomena associated with fogging and overspray are not always consistent and are sometimes misleading and incorrect. This paper focuses on reviewing several interesting features and commonly discussed topics, including (a) entropy production of water evaporation, (b) the effect of centrifugal force on water droplets, and (c) whether water droplets can survive the journey in the compressor and enter the combustor. Furthermore, three turbine myths that fogging/overspray increases the air density in the compressor, reduces the compressor power consumption, and noticeably enhances the GT efficiency are examined and discussed. Some common mistakes in describing the compressor work are identified and corrected. A newly constructed multiphase T–s diagram is used to explain the physics of water droplet evaporation process and corresponding entropy production during wet compression.


Author(s):  
M. Bagnoli ◽  
M. Bianchi ◽  
F. Melino ◽  
A. Peretto ◽  
P. R. Spina ◽  
...  

In recent years, among various available inlet air cooling techniques for gas turbine power enhancement, high pressure fogging has seen an increasing attention mainly because of its comparatively low initial investment cost and less downtime for its installation. The various fogging strategies such as inlet evaporative, overspray (or wet compression) and interstage injection have been implemented in simple and combined cycle applications. Unlike wet compression, air at the compressor inlet is not fully saturated with the interstage injection. However, both wet compression and interstage injection involve multi-phase flow and water evaporation during the compression process. The phenomenon of two phase flow compression in axial compressor is not yet fully understood. This paper investigates effects of interstage injection on the performance of a GE Frame 7EA gas turbine using aero-thermodynamic modeling. In addition to estimating the overall gas turbine performance changes achievable with the interstage injection approach, the study presented here discusses impact of interstage injection on the stage-by-stage compressor performance characteristics of the selected gas turbine. The plausible reasons for the observed performance changes are discussed.


Author(s):  
Yan Shao ◽  
Qun Zheng

Wet compression is an effective way of gas turbine power augmentation, but at the same time it causes some new thermodynamic problems. How to evaluate the thermodynamic parameters and how to improve the wet compression process and wet compression gas turbine cycle are key to the actual applications of the technique in industries. From the entropy and exergy views, wet compression processes are analyzed in this paper. By calculating the entropy and exergy variations with the established thermodynamic models of wet compression process, we presented some interesting results that could used to reduce the increase of entropy and the loss of exergy in the wet compression process. On the basis of thermodynamic analysis of wet compression, the entropy and exergy effects at different evaporative rates, different pressure ratios etc. are further investigated in this paper.


Sign in / Sign up

Export Citation Format

Share Document