Analysis of the Heat Transfer Driving Parameters in Tight Rotor Blade Tip Clearances

Author(s):  
S. Lavagnoli ◽  
C. De Maesschalck ◽  
G. Paniagua

Turbine rotor tips and casings are vulnerable to mechanical failures due to the extreme thermal loads they undergo during engine operation. In addition to the heat flux variations during the transient phase, high-frequency unsteadiness occurs at every rotor passage, with amplitude dependent on the tip gap. The development of appropriate predictive tools and cooling schemes requires the precise understanding of the heat transfer mechanisms. The present paper analyzes the nature of the overtip flow in transonic turbine rotors running at tight clearances, and explores a methodology to determine the relevant flow parameters that model the heat transfer. Steady-state three-dimensional Reynolds-Averaged Navier-Stokes calculations were performed to simulate engine-like conditions considering two rotor tip gaps, 0.1% and 1% of the blade span. At tight tip clearance, the adiabatic wall temperature is not anymore independent of the solid thermal boundary conditions. The adiabatic wall temperature predicted with the linear Newton’s cooling law was observed to rise to non-physical levels in certain regions within the rotor tip gap, resulting in unreliable convective heat transfer coefficients. This paper investigates different approaches to estimate the relevant flow parameters that drive the heat transfer. The present study allows experimentalists to retrieve information on the gap flow temperature and convective heat transfer coefficient based on the use of wall heat flux measurements. Such approach is required to improve the accuracy in the evaluation of the heat transfer data while enhancing the understanding of tight-clearance overtip flows.

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Sergio Lavagnoli ◽  
Cis De Maesschalck ◽  
Guillermo Paniagua

Turbine rotor tips and casings are vulnerable to mechanical failures due to the extreme thermal loads they undergo during engine service. In addition to the heat flux variations during the engine transient operation, periodic unsteadiness occurs at every rotor passage, with amplitude dependent on the tip gap. The development of appropriate predictive tools and cooling schemes requires the precise understanding of the heat transfer mechanisms. The present paper analyses the nature of the overtip flow in transonic turbine rotors running at tight clearances and explores a methodology to determine the relevant flow parameters that model the heat transfer. Steady-state three-dimensional Reynolds-averaged Navier–Stokes (RANS) calculations were performed to simulate engine-like conditions considering two rotor tip gaps, 0.1% and 1%, of the blade span. At tight tip clearance, the adiabatic wall temperature is no longer independent of the solid thermal boundary conditions. The adiabatic wall temperature predicted with the linear Newton's cooling law was observed to rise to unphysical levels in certain regions within the rotor tip gap, resulting in unreliable convective heat transfer coefficients (HTCs). This paper investigates different approaches to estimate the relevant flow parameters that drive the heat transfer. A novel four-coefficient nonlinear cooling law is proposed to model the effects of temperature-dependent gas properties and of the heat transfer history. The four-parameter correlation provided reliable estimates of the convective heat transfer descriptors for the 1% tip clearance case, but failed to model the tip heat transfer of the 0.1% tip gap rotor. The present study allows experimentalists to retrieve information on the gap flow temperature and convective HTC based on the use of wall heat flux measurements. The use of nonlinear cooling laws is sought to improve the evaluation of the rotor heat transfer data while enhancing the understanding of tight-clearance overtip flows.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
S. Lavagnoli ◽  
G. Paniagua ◽  
C. De Maesschalck ◽  
T. Yasa

In modern gas turbine engines, the rotor casing is vulnerable to thermal failures due to large unsteady heat fluxes. The rotor tip flow unsteadiness is induced by the periodic passage of the rotor blades, with an intensity dependent on the tip gap geometry. Hence, the understanding of the physics is of paramount importance to develop appropriate predictive tools and improve the cooling schemes. The present research aims at providing essential information on the flow conditions, which should serve to assess the relative impact of the overtip flow, tip gap magnitude, and work extraction processes on the casing thermal load. This paper presents simultaneous measurements of steady and unsteady heat transfer, pressure and rotor tip clearance in the casing of a transonic turbine stage. The research article was tested in a compression tube facility operating at engine representative conditions (vane Mach number 1.07, vane outlet Reynolds number 1.3 × 106, pressure ratio is 2.92, at 6790 rpm). The rotor blade geometry has a flat tip with a nominal tip clearance of about 0.4% of blade height. The heat transfer, pressure, and tip clearance data were obtained at three circumferential positions around the turbine casing. The heat flux was monitored using a single-layered thin film gauge able to resolve with high fidelity the wall temperature fluctuations. The heat flux sensor was mounted on a probe equipped with a heating device that allows varying the wall temperature. A series of experiments was performed at different heating rates to derive the local adiabatic wall temperature and the adiabatic convective heat transfer coefficient. A high bandwidth capacitive sensor provided the instantaneous value of the single blade tip clearance. A simple zero-dimensional model has been proved effective to predict the local flow temperature while the rotor spins up prior to the test, and estimate the overtip flow temperature during a test.


Author(s):  
Jiwon Yu ◽  
Seok-won Kang ◽  
Saeil Jeon ◽  
Debjyoti Banerjee

Forced convective heat transfer experiments were performed for internal flow of de-ionized water (DIW) and aqueous nanofluids (ANF) in microchannels that were integrated with a calorimeter apparatus and an array of temperature nanosensors. The heat flux and wall temperature distribution was measured for the different test fluids as a function of fluid inlet temperature, wall temperature, heat flux, nanoparticles concentration, nanoparticle materials (composition, nanoparticle size and shape) and flow rates. Anomalous behavior of the nanofluids in convective heat transfer was observed where the heat flux varied as a function of flow rate and bulk temperature. The heat exchanging surfaces were characterized using electron microscopy (SEM, TEM) to monitor the change in surface characteristics both before and after the experiments. Precipitation of nanoparticles on the walls of the microchannels can lead to the formation of “nano-fins” at low concentrations of the nanoparticles while more rampant precipitation at high concentration of the nanoparticles in the nanofluids can lead to scaling (fouling) of the microchannel surfaces leading to degradation of convective heat transfer — compared to that of pure water under the same experimental conditions. Also, competing effects resulting from the decrease in the specific heat capacity as well as anomalous enhancement in the thermal conductivity of aqueous nanofluids can lead to counter-intuitive behavior of these test liquids during forced convective heat transfer.


Author(s):  
S. Lavagnoli ◽  
G. Paniagua ◽  
C. De Maesschalck ◽  
T. Yasa

In modern gas turbine engines, the rotor casing is vulnerable to thermal failures due to large unsteady heat fluxes. The rotor tip flow unsteadiness is induced by the periodic passage of the rotor blades, with an intensity dependent on the tip gap geometry. Hence, the understanding of the physics is of paramount importance to develop appropriate predictive tools and improve the cooling schemes. The present research aims at providing essential information on the flow conditions, which should serve to assess the relative impact of the overtip flow, tip gap magnitude and work extraction processes on the casing thermal load. This paper presents simultaneous measurements of steady and unsteady heat transfer, pressure and rotor tip clearance in the casing of a transonic turbine stage. The research article was tested in a compression tube facility operating at engine representative conditions (vane Mach number 1.07, vane outlet Reynolds number 1.3×106, pressure ratio is 2.92, at 6790 RPM). The rotor blade geometry has a flat tip with a nominal tip clearance of about 0.4% of blade height. The heat transfer, pressure, and tip clearance data were obtained at three circumferential positions around the turbine casing. The heat flux was monitored using a single-layered thin film gauge able to resolve with high-fidelity the wall temperature fluctuations. The heat flux sensor was mounted on a probe equipped with a heating device that allows varying the wall temperature. A series of experiments was performed at different heating rates to derive the local adiabatic wall temperature and the adiabatic convective heat transfer coefficient. A high bandwidth capacitive sensor provided the instantaneous value of the single blade tip clearance. A simple zero-dimensional model has been proved effective to predict the local flow temperature while the rotor spins up prior to the test, and estimate the overtip flow temperature during a test.


2011 ◽  
Vol 110-116 ◽  
pp. 393-399
Author(s):  
S.M. Sohel Murshed ◽  
C.A. Nieto de Castro ◽  
M.J.V. Lourenço ◽  
M.L.M. Lopes ◽  
F.J.V. Santos

Nanofluids have attracted great interest from researchers worldwide because of their reported superior thermal performance and many potential applications. However, there are many controversies and inconsistencies in reported experimental results of thermal conductivity, convective heat transfer coefficient and critical heat flux of nanofluids. In this paper, two major features of nanofluids, which are boiling and convective heat transfer characteristics are presented besides critically reviewing recent research and development on these areas of nanofluids.


1990 ◽  
Vol 68 (3) ◽  
pp. 1275-1281 ◽  
Author(s):  
U. Danielsson

A heat flux disk has been developed that directly measures the convective heat transfer in W/m2. When the sensor is calibrated on an aluminum cylinder, the calibration constant obtained is greatest in still air. As air movement increases, the calibration constant is reduced with increasing convective heat transfer coefficient, 0.5%.W-1.m2.K. The influence of wind on the calibration value is greatly reduced when the sensor is attached to a surface with lower thermal conductivity. The local convective heat transfer coefficient (hc) of the human body was measured. The leg acts in a manner similar to that of a cylinder, with the highest hc value at the front facing the wind and the lowest approximately 90 degrees from the wind, and in the wake a value is obtained that is close to the average hc value of the leg. When hc is measured at several angles and positions all over the body, the results indicate that the body acts approximately as a cylinder with a hc value related to the wind speed as hc = 8.6.v0.6 W.m-2.K-1, where v is velocity.


Author(s):  
Ali A. Ameri ◽  
David L. Rigby ◽  
Erlendur Steinthorsson ◽  
James Heidmann ◽  
John C. Fabian

The effect of the upstream wake on the blade heat transfer has been numerically examined. The geometry and the flow conditions of the first stage turbine blade of GE’s E3 engine with a tip clearance equal to 2% of the span was utilized. Based on numerical calculations of the vane, a set of wake boundary conditions were approximated which were subsequently imposed upon the downstream blade. This set consisted of the momentum and thermal wakes as well as the variation in modeled turbulence quantities of turbulence intensity and the length scale. Using a one blade periodic domain, the distributions of unsteady heat transfer rate on the turbine blade and its tip, as affected by the wake, were determined. Such heat transfer coefficient distribution was computed using the wall heat flux and the adiabatic wall temperature to desensitize the heat transfer coefficient to the wall temperature. For the determination of the wall heat flux and the adiabatic wall temperatures, two set of computations were required. The results were used in a phase-locked manner to compute the unsteady or steady heat transfer coefficients. It has been found that the unsteady wake has some effect on the distribution of the time averaged heat transfer coefficient on the blade and that this distribution is different from the distribution that is obtainable from a steady computation. This difference was found to be as large as 20 percent of the average heat transfer on the blade surface. On the tip surface, this difference is comparatively smaller and can be as large as four percent of the average.


Author(s):  
Zhe Liu ◽  
Lukas Benjamin Inhestern ◽  
James Braun ◽  
Guillermo Paniagua

Abstract The supersonic outlet conditions from a rotating detonation combustor exhibit fluctuations in temperature and pressure that exceed 200% of their mean level. Such unsteady conditions will induce a large convective heat loading onto a downstream supersonic turbine. Hence, the precise evaluation of the thermal load to the vane and rotor is essential to the design of adequate cooling strategies. In this paper, a numerical framework is proposed to compute the convective heat transfer on two types of supersonic turbines: axial and radial outflow. The fluctuations imposed at the turbine inlet were obtained from a nozzle coupled to a rotating detonation combustor. Both radial and axial turbines were designed and subsequently analyzed with full stage unsteady simulations using an Unsteady Reynolds Averaged Navier–Stokes solver. The inlet boundary conditions to the turbine are based on CFD results from a rotating detonation combustor. The unsteady adiabatic convective heat transfer coefficient was obtained from two simulations performed at a fixed homogeneous wall temperature. The heat flux variation in span-wise and stream-wise direction is analyzed in detail. Budgeting of the unsteady heat flux mechanism was performed to identify the driving contributor of the heat transfer within the turbine and finally both designs are compared.


Sign in / Sign up

Export Citation Format

Share Document