Gas Turbine Exhaust Temperature Measurement Approach Using Time-Frequency Controlled Sources

Author(s):  
Upul DeSilva ◽  
Richard H. Bunce ◽  
Joshua M. Schmitt ◽  
Heiko Claussen

Siemens has developed a novel approach for measuring the process gas temperature leaving the power turbine in their heavy industrial gas turbine engines using active acoustic tomography. Siemens has deployed this measurement technique on two test engines of different power ranges and different combustion and exhaust duct configurations. These engine tests have demonstrated that this technology is effective and robust. All working parts are outside the heat effective zone so, unlike the traditional intrusive point temperature measurement method, sensors are easily replaceable during engine operation. Bulk exhaust temperature is used in performance testing of industrial gas turbine engines and is a critical measurement for power production. Temperature distribution information in the exhaust plane is valuable for safe engine operation and can be used to prevent lifetime reduction due to hotspots or to monitor the burner flames. Siemens used broadband sound sources for the previously reported acoustic pyrometer experiments. This paper extends this work utilizing sparse time-frequency encoded sources to improve the robustness of time of flight estimation in the high noise area of the turbine exhaust. The goal is to achieve a higher signal to noise ratio between the emitted and received signals by focusing the acoustic energy into narrow time-frequency bins that are little affected by turbine noise. Different acoustic patterns are tested and compared to the previously used broadband source both in laboratory experiments and a turbine test bed. The patterns are evaluated regarding their noise robustness, sound pressure levels and narrow autocorrelation which are important for accurate time of flight estimation in high noise environments.

Author(s):  
Craig R. Davison ◽  
A. M. Birk

A computer model of a gas turbine auxiliary power unit was produced to develop techniques for fault diagnosis and prediction of remaining life in small gas turbine engines. Due to the relatively low capital cost of small engines it is important that the techniques have both low capital and operating costs. Failing engine components were identified with fault maps, and an algorithm was developed for predicting the time to failure, based on the engine’s past operation. Simulating daily engine operation over a maintenance cycle tested the techniques for identification and prediction. The simulation included daily variations in ambient conditions, operating time, load, engine speed and operating environment, to determine the amount of degradation per day. The algorithm successfully adapted to the daily changes and corrected the operating point back to standard conditions to predict the time to failure.


Author(s):  
J. M. Vaught

The American National Standards Institute (ANSI) required that the source testing Standard on Measurement of Exhaust Emissions from Stationary Gas Turbine Engines, B133.9, be brought up to date with today’s regulatory requirements and best measurement technology. The criteria for the design of the Standard along with its content and format are discussed. The selection of measurement methods for gaseous components, smoke, and particulates emitted by present day emission controlled industrial gas turbine engines is presented.


Author(s):  
Matthew G. Hoffman ◽  
Richard J. DeCorso ◽  
Dennis M. Russom

The U.S. Navy has experienced problems with liquid fuel nozzles used on the Rolls Royce (formerly Allison) 501K series marine gas turbine engines. The 501K engines used by the U.S. Navy power Ship Service Gas Turbine Generators (SSGTGs) on a number of destroyer and cruiser class ships. Over roughly the last 25 years, 3 different nozzle designs have been employed, the latest and current nozzle being a piloted air blast design. The primary failure modes of these designs were internal fuel passage coking and external carbon deposits. The current piloted air blast design has a hard time replacement requirement of 1500 hours. This life is considered unacceptable. To improve fuel nozzle life, the Navy and Turbine Fuel Technologies (formerly Delavan) teamed in a fast track program to develop a new fuel nozzle with a target life of 5000 hours and 500 starts. As a result, an air assist/air blast nozzle was developed and delivered in approximately 6 months. In addition to the nozzle itself, a system was developed to provide assist air to the fuel nozzles to help atomize the fuel for better ignition. Nozzle sets and air assist systems have been delivered and tested at the NSWC Philadelphia LBES (Land Based Engineering Site). In addition, nozzle sets have been installed aboard operating ships for in-service evaluations. During the Phase one evaluation (July 2000 to June 2001) aboard USS Porter (DDG 78) a set of nozzles accumulated over 3500 hours of trouble free operation, indicating the target of 5000 hours is achievable. As of this writing these nozzles have in excess of 5700 hours. The improvements in nozzle life provided by the new fuel nozzle design will result in cost savings through out the life cycle of the GTGS. In fact, the evaluation nozzles are already improving engine operation and reliability even before the nozzles’ official fleet introduction. This paper describes the fuel nozzle and air assist system development program and results of OEM, LBES and fleet testing.


2018 ◽  
Vol 220 ◽  
pp. 03001
Author(s):  
Andrey Tkachenko ◽  
Ilia Krupenich ◽  
Evgeny Filinov ◽  
Yaroslav Ostapyuk

This article describes the multi-level approach to developing the virtual testing rig of gas turbine engines and power plants. The described virtual rig is developed on the basis of computer-aided system of thermogasdynamic calculations and analysis ASTRA, developed at Samara National Research University. Existing testing rig is widely used in educational process to supply the students’ research activities with the information on engine operation in a variety of ambient and flight conditions during transients. An approach to upgrading the virtual testing rig is proposed. The described modifications would provide the capabilities to solve more complex research tasks, including investigation of influence of geometry of engine elements on the engine characteristics, multidisciplinary investigations, identification of engine models using the results of experimental investigations and identification of sources of engine deficiencies during the development phase of engine designing.


Author(s):  
Nanahisa Sugiyama

This paper describes a real-time or faster-than-real-time simulation of gas turbine engines, using an ultra high speed, multi-processor digital computer, designated the AD100. It is shown that the frame time is reduced significantly without any loss of fidelity of a simulation. The simulation program is aimed at a high degree of flexibility to allow changes in engine configuration. This makes it possible to simulate various types of gas turbine engines, including jet engines, gas turbines for vehicles and power plants, in real-time. Some simulation results for an intercooled-reheat type industrial gas turbine are shown.


Author(s):  
D. A. Groghan ◽  
C. L. Miller

The FT9 Marine Gas Turbine development program was initiated in August 1973 by the Naval Sea Systems Command to fulfill, in part, the requirement for a family of gas turbine engines ranging in power from 1000 to 30,000 hp. The FT9 satisfied the requirement to develop a 30,000 hp class marine gas turbine. The FT9 is a derivative of the Pratt & Whitney Aircraft JT9D engine, which powers Boeing 747, DC-10 and A300 aircraft, and of the FT4 industrial gas turbine engine. The FT9 specification also required development of an on-line engine condition monitoring system. A rigorous development test program showed the FT9 has met all specified U.S. Navy requirements and demonstrated its suitability for use in U.S. Navy combatant ships.


1995 ◽  
Vol 117 (3) ◽  
pp. 563-568
Author(s):  
J. M. Vaught

The American National Standards Institute (ANSI) required that the source testing Standard on Measurement of Exhaust Emissions from Stationary Gas Turbine Engines, B133.9, be brought up to date with today’s regulatory requirements and best measurement technology. The criteria for the design of the Standard along with its content and format are discussed. The selection of measurement methods for gaseous components, smoke, and particulates emitted by present-day emission-controlled industrial gas turbine engines is presented.


1990 ◽  
Vol 112 (4) ◽  
pp. 585-589 ◽  
Author(s):  
B. W. Harris

Acid dewpoints were calculated from SO2-to-SO3 conversion in gas turbine exhaust. These data can be used as guidelines in setting feedwater temperatures in combined-cycle systems. Accurate settings can prevent corrosion of heat-exchanger (boiler) tubes, thus extending their life time. This study was done using gas turbine engines and a laboratory generator set. The units burned marine diesel or diesel No. 2 fuel with sulfur contents up to 1.3 percent. The exhaust from these systems contained an excess of 20 percent oxygen, and 3–10 percent water vapor. Exhaust temperatures ranged from 728 to 893 K (455 to 620°C).


Sign in / Sign up

Export Citation Format

Share Document