An Experimental Investigation of the Effects of Grooved Tip Geometry on the Flow Field in a Turbine Cascade Passage Using Stereoscopic PIV

Author(s):  
Yangtao Tian ◽  
Hongwei Ma ◽  
Lixiang Wang

In the unshrouded axial turbine, the tip clearance gap can cause the losses of turbine efficiency and the penalty of turbine performance. Based on previous investigations, changing the blade tip geometry plays an important role in improving the turbine efficiency and performance. In this paper, the Stereoscopic Particle Imaging Velocimetry (SPIV) measurements were conducted to study the effects of grooved tip geometry on the flow field inside a turbine cascade passage. During the measurements, the double-frame CCD cameras were configured at different sides of the laser light sheet. Additionally, the Diisooctyl Sebacate (DEHS) was treated as the tracer particle. The tip clearance gap of both grooved tip and flat tip was set to 1.18% of the blade chord. The groove height was specified as 2.94% of the blade chord. In this study, the flow field results of eight measured planes were presented. Some typical features of the complicated flow structures, such as tip leakage vortex formation, development, breakdown and the dissipation, the variations of turbulence intensity and Reynolds stress, the blockage characteristic, were discussed as well. The experimental results show that the tip leakage flow/vortex is weakened by the grooved tip. The blockage effect and the flow capacity of the turbine passage are also improved. The tip leakage vortex breaks down at about 70% camber line, but the pattern of leakage vortex has changed into an ellipse at 60% camber line, which is an indication of the vortex breakdown. As for the decomposed and reconstructed flow, the first modal flow is the most similar to the original flow field. And it can capture the dominant flow features in flow field. And the flow of mode 2 and mode 3 generates many eddies with small scale.

Author(s):  
Shaowen Chen ◽  
Qinghe Meng ◽  
Weihang Li ◽  
Zhihua Zhou ◽  
Songtao Wang

The effects of axially non-uniform clearances on the tip leakage flow and aerodynamic performance in a linear turbine cascade with a cavity squealer tip were investigated in this study with the objective of improving the flow loss and tip flow field structure. A calibrated five-hole probe was used for the measurement of three-dimensional flows downstream of the cascade. The method of oil-flow visualization was used to show the endwall flow field structure. The distribution of endwall static pressure was measured particularly by using the special moveable endwall. The axially non-uniform clearance, as a novel strategy that has a non-negligible influence on tip clearance flow and clearance leakage loss, may become a potential technology for improving aerodynamic performance in turbine cascades. By using the expanding clearance, the flow loss at the outlet is reduced effectively and an apparent improvement of aerodynamic performance in the turbine cascade is gained. Under the tip clearances of 0.75% H and 2% H, the maximum reduction of overall total pressure loss coefficient at the outlet is separately about 2.3% and 3.5% compared with the uniform clearance. The shrinkage of the buffer zone is considered to be able to weaken the interaction of the tip leakage vortex and passage vortex and thus reduce the loss of passage vortex. For the shrinking clearance, a noticeable decline in the aerodynamic performance of turbine cascade with cavity squealer tip is exhibited at both on and off design conditions in contrast to the uniform clearance. In addition, the effects of axially non-uniform clearances on the aerodynamic performance at off-design conditions have been investigated.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
P. Palafox ◽  
M. L. G. Oldfield ◽  
J. E. LaGraff ◽  
T. V. Jones

New, detailed flow field measurements are presented for a very large low-speed cascade representative of a high-pressure turbine rotor blade with turning of 110deg and blade chord of 1.0m. Data were obtained for tip leakage and passage secondary flow at a Reynolds number of 4.0×105, based on exit velocity and blade axial chord. Tip clearance levels ranged from 0% to 1.68% of blade span (0% to 3% of blade chord). Particle image velocimetry was used to obtain flow field maps of several planes parallel to the tip surface within the tip gap, and adjacent passage flow. Vector maps were also obtained for planes normal to the tip surface in the direction of the tip leakage flow. Secondary flow was measured at planes normal to the blade exit angle at locations upstream and downstream of the trailing edge. The interaction between the tip leakage vortex and passage vortex is clearly defined, revealing the dominant effect of the tip leakage flow on the tip end-wall secondary flow. The relative motion between the casing and the blade tip was simulated using a motor-driven moving belt system. A reduction in the magnitude of the undertip flow near the end wall due to the moving wall is observed and the effect on the tip leakage vortex examined.


Author(s):  
Fu Chen ◽  
Yunfeng Fu ◽  
Jianyang Yu ◽  
Yanping Song

In this paper, the control mechanism of the honeycomb tip structure on the tip leakage flow of a turbine cascade is studied experimentally and numerically, and the sensitivity of tip leakage flow characteristics to different clearance heights from 0.5% to 2% based on the blade span are mainly discussed. A flat tip is considered as a comparative case. The results show that a part of the leakage flow enters the tip honeycomb cavity, forming small-scale vortices and mixes with the upper leakage fluid, which increases the flow resistance within the clearance. In the range of clearance height variation investigated, honeycomb tip structure can effectively reduce the leakage flow, and reduce the size and strength of the leakage vortex, so that the loss of the cascade is reduced. At a large tip clearance height, the unstable split of the vortex cores causes the vortex in the honeycomb cavities near pressure side to grow in size, so that the vortex extends further into the upper gap, where the turbulent blocking effect of the vortices on the leakage flow is increased. However, due to the vortex movement and the mixing between honeycomb vortices and the upper clearance flow, there is no obvious advantage in reducing the total loss of the cascade compared to the small tip clearance height.


Author(s):  
Xiaocheng Zhu ◽  
Wanlai Lin ◽  
Zhaohui Du ◽  
Yan Zhao

The three-dimensional flow field in the tip region of an isolated axial flow fan rotor with two different tip clearances are investigated using a three-color, dual-beam PDA system (Particle Doppler Anemometer, DANTEC Measurement Technology). The global performance is also obtained, and is compared favorably with CFD (Computational Fluid Dynamics) modeling of this fan flow at a zero tip clearance. The detailed flow field measurements are taken at 15 axial locations upstream, inside and at the exit of the rotor. In the radial direction, 15 measurement locations are arranged from 50% of the blade span to the casing wall, mainly focusing on the tip region from 90% of the blade span location to the casing wall (about 10 measurement locations). The PDA data has provided a quantitative understanding of the flow phenomena in the tip region of the fan rotor. For both tip clearances, it has been observed that the tip leakage flow rolls up into a tip leakage vortex. Due to the rotation of the rotor, this tip leakage vortex moves away from the suction surface of the fan blade. A reverse flow is induced in the main flow passage because of the tip leakage vortex. The depth and extent of the tip leakage vortex grow noticeably with the increase of the tip clearance.


Author(s):  
P. Palafox ◽  
M. L. G. Oldfield ◽  
J. E. LaGraff ◽  
T. V. Jones

New, detailed flow field measurements are presented for a very large low-speed cascade representative of a high-pressure turbine rotor blade with turning of 110 degrees and blade chord of 1.0 m. Data was obtained for tip leakage and passage secondary flow at a Reynolds number of 4.0 × 105, based on exit velocity and blade axial chord. Tip clearance levels ranged from 0% to 1.68% of blade span (0% to 3% of blade chord). Particle Image Velocimetry (PIV) was used to obtain flow field maps of several planes parallel to the tip surface within the tip gap, and adjacent passage flow. Vector maps were also obtained for planes normal to the tip surface in the direction of the tip leakage flow. Secondary flow was measured at planes normal to the blade exit angle at locations upstream and downstream of the trailing edge. The interaction between the tip leakage vortex and passage vortex is clearly defined, revealing the dominant effect of the tip leakage flow on the tip endwall secondary flow. The relative motion between the casing and the blade tip was simulated using a motor-driven moving belt system. A reduction in the magnitude of the under-tip flow near the endwall due to the moving wall is observed and the effect on the tip leakage vortex examined.


Author(s):  
K. Yamada ◽  
M. Furukawa ◽  
T. Nakano ◽  
M. Inoue ◽  
K. Funazaki

Unsteady three-dimensional flow fields in a transonic axial compressor rotor (NASA Rotor 37) have been investigated by unsteady Reynolds-averaged Navier-Stokes simulations. The simulations show that the breakdown of the tip leakage vortex occurs in the compressor rotor because of the interaction of the vortex with the shock wave. At near-peak efficiency condition small bubble-type breakdown of the tip leakage vortex happens periodically and causes the loading of the adjacent blade to fluctuate periodically near the leading edge. Since the blade loading near the leading edge is closely linked to the swirl intensity of the tip leakage vortex, the periodic fluctuation of the blade loading leads to the periodic breakdown of the tip leakage vortex, resulting in self-sustained flow oscillation in the tip leakage flow field. However, the tip leakage vortex breakdown is so weak and small that it is not observed in the time-averaged flow field at near-peak efficiency condition. On the other hand, spiral-type breakdown of the tip leakage vortex is caused by the interaction between the vortex and the shock wave at near-stall operating condition. The vortex breakdown is found continuously since the swirl intensity of tip leakage vortex keeps strong at near-stall condition. The spiral-type vortex breakdown has the nature of self-sustained flow oscillation and gives rise to the large fluctuation of the tip leakage flow field, in terms of shock wave location, blockage near the rotor tip and three-dimensional separation structure on the suction surface. It is found that the breakdown of the tip leakage vortex leads to the unsteady flow phenomena near the rotor tip, accompanying large blockage effect in the transonic compressor rotor at the near-stall condition.


Author(s):  
Shraman Goswami ◽  
Ashima Malhotra

Abstract Performance of an axial compressor rotor depends largely on the tip leakage flow. Tip leakage flow results in tip leakage vortex which is a source of loss. This has an impact on the compressor efficiency as well as stall margin. A lot of work has been done to understand the tip leakage flow and controlling the same. Active and passive stall margin improvement methods mainly target the tip leakage vortex. In the current study, numerical investigations are carried out to understand flow fields near tip region of rotors. The blade tip designed to have a tip gap as sine and cosine waves (single and double waves). Numerical methodology is validated with NASA Rotor37 test results. The performance parameters of the rotors with modified tip gap shapes are compared with constant tip clearance rotor. A detailed flow field investigation is presented to compare the tip flow structure and its impact on overall performance of the compressor.


Author(s):  
Hongwei Ma ◽  
Yangtao Tian

In the unshrouded axial turbine, the tip clearances can result in the loss of turbine efficiency and the penalty of turbine performance. Therefore, investigating the blade tip geometry of improving the turbine performance has a great significance. This paper is to study the effects of non-uniform tip clearance on the flow field in a turbine cascade. The numerical works are performed at the incidence angle of 0 degree and the exit Reynolds number of 1.7 × 105 based on the blade chord. In the investigations, the flat tip (Basic) geometry was employed as a benchmark, and three different tip geometries, including the pressure side squealer (PSQ), suction side squealer (SSQ) and grooved tip (Grooved), were studied. The tip clearances are all specified as 1.18% of the chord. The squealer height is set to 2.94% of the chord. The endwall static pressure, tip leakage loss, flow capacity and the development of tip leakage vortex are discussed. And the numerical results show that the grooved tip which can obtain the least total pressure loss, is helpful to smooth the pressure change from pressure side to suction side and suppress the intensity of tip leakage vortex. The tip clearance flow in the pre semi-passage is mainly involved in the passage vortex, and in the post semi-passage it is added to the tip leakage vortex. Compared with the Basic, PSQ and SSQ tips, the Grooved tip contributes to reducing the tip leakage flow and the tip leakage loss. And the leakage flow can be strengthened in the middle passage for the PSQ. The difference between the area averaged streamwise coefficient and mass averaged loss is almost opposite for the SSQ and Grooved tip, which is uncertain the performance of the turbine cascade with the SSQ and Grooved tip is better than the Basic tip.


Author(s):  
Kai Zhou ◽  
Chao Zhou

In turbines, secondary vortices and tip leakage vortices develop and interact with each other. In order to understand the flow physics of vortices interaction, the effects of incoming vortex on the downstream tip leakage flow are investigated in terms of the aerodynamic performance in a turbine cascade. Experimental, numerical and analytical methods are used. In the experiment, a swirl generator was used upstream near the casing to generate the incoming vortex, which interacted with the tip leakage vortex in the turbine cascade. The swirl generator was located at ten different pitchwise locations to simulate the quasi-steady effects. In the numerical study, a Rankine-like vortex was defined at the inlet of the computational domain to simulate the incoming swirling vortex. Incoming vortices with opposite directions were investigated. The vorticity of the positive incoming swirling vortex has a large vector in the same direction as that of the tip leakage vortex. In the case of the positive incoming swirling vortex, the vortex mixes with the tip leakage vortex to form one vortex near the tip as it transports downstream. The vortices interaction reduces the vorticity of the flow near the tip, as well as the loss by making up for the streamwise momentum within the tip leakage vortex core. In contrast, the negative incoming swirling vortex has little effects on the tip leakage vortex and the loss. As the negative incoming swirling vortex transports downstream, it is separated from the tip leakage vortex and forms two vortices. A triple-vortices-interaction kinetic analytical model and one-dimensional mixing model are proposed to explain the mechanism of vortex interaction on the aerodynamic performance.


Author(s):  
Masanao Kaneko ◽  
Hoshio Tsujita

A transonic centrifugal compressor impeller is generally composed of the main and the splitter blades which are different in chord length. As a result, the tip leakage flows from the main and the splitter blades interact with each other and then complicate the flow field in the compressor. In this study, in order to clarify the individual influences of these leakage flows on the flow field in the transonic centrifugal compressor stage at near-choke to near-stall condition, the flows in the compressor at four conditions prescribed by the presence and the absence of the tip clearances were analyzed numerically. The computed results clarified the following noticeable phenomena. The tip clearance of the main blade induces the tip leakage vortex from the leading edge of the main blade. This vortex decreases the blade loading of the main blade to the negative value by the increase of the flow acceleration along the suction surface of the splitter blade, and consequently induces the tip leakage vortex caused by the negative blade loading of the main blade at any operating points. These phenomena decline the impeller efficiency. On the other hand, the tip clearance of the splitter blade decreases the afore mentioned acceleration by the formation of the tip leakage vortex from the leading edge of the splitter blade and the decrease of the incidence angle for the splitter blade caused by the suction of the flow into the tip clearance. These phenomena reduce the loss generated by the negative blade loading of the main blade and consequently reduce the decline of the impeller efficiency. Moreover, the tip clearances enlarge the flow separation around the diffuser inlet and then decline the diffuser performance independently of the operating points.


Sign in / Sign up

Export Citation Format

Share Document