Unsteady Three-Dimensional Flow Phenomena Due to Breakdown of Tip Leakage Vortex in a Transonic Axial Compressor Rotor

Author(s):  
K. Yamada ◽  
M. Furukawa ◽  
T. Nakano ◽  
M. Inoue ◽  
K. Funazaki

Unsteady three-dimensional flow fields in a transonic axial compressor rotor (NASA Rotor 37) have been investigated by unsteady Reynolds-averaged Navier-Stokes simulations. The simulations show that the breakdown of the tip leakage vortex occurs in the compressor rotor because of the interaction of the vortex with the shock wave. At near-peak efficiency condition small bubble-type breakdown of the tip leakage vortex happens periodically and causes the loading of the adjacent blade to fluctuate periodically near the leading edge. Since the blade loading near the leading edge is closely linked to the swirl intensity of the tip leakage vortex, the periodic fluctuation of the blade loading leads to the periodic breakdown of the tip leakage vortex, resulting in self-sustained flow oscillation in the tip leakage flow field. However, the tip leakage vortex breakdown is so weak and small that it is not observed in the time-averaged flow field at near-peak efficiency condition. On the other hand, spiral-type breakdown of the tip leakage vortex is caused by the interaction between the vortex and the shock wave at near-stall operating condition. The vortex breakdown is found continuously since the swirl intensity of tip leakage vortex keeps strong at near-stall condition. The spiral-type vortex breakdown has the nature of self-sustained flow oscillation and gives rise to the large fluctuation of the tip leakage flow field, in terms of shock wave location, blockage near the rotor tip and three-dimensional separation structure on the suction surface. It is found that the breakdown of the tip leakage vortex leads to the unsteady flow phenomena near the rotor tip, accompanying large blockage effect in the transonic compressor rotor at the near-stall condition.

Author(s):  
Shraman Goswami ◽  
Ashima Malhotra

Abstract Performance of an axial compressor rotor depends largely on the tip leakage flow. Tip leakage flow results in tip leakage vortex which is a source of loss. This has an impact on the compressor efficiency as well as stall margin. A lot of work has been done to understand the tip leakage flow and controlling the same. Active and passive stall margin improvement methods mainly target the tip leakage vortex. In the current study, numerical investigations are carried out to understand flow fields near tip region of rotors. The blade tip designed to have a tip gap as sine and cosine waves (single and double waves). Numerical methodology is validated with NASA Rotor37 test results. The performance parameters of the rotors with modified tip gap shapes are compared with constant tip clearance rotor. A detailed flow field investigation is presented to compare the tip flow structure and its impact on overall performance of the compressor.


Author(s):  
Kazutoyo Yamada ◽  
Hiroaki Kikuta ◽  
Masato Furukawa ◽  
Satoshi Gunjishima ◽  
Yasunori Hara

The paper presents experimental and numerical studies on the effects of tip clearance on the stall inception process in a low-speed axial compressor rotor with a large tip clearance. It has been revealed that in the small tip clearance case, shortly after the spike disturbance which results from the leading-edge separation near the rotor tip appears, the tornado-like vortex is generated by the separation, and soon the compressor falls into stall. In the large tip clearance case, the experiment showed that the performance characteristic differs from that in the small tip clearance case at near-stall conditions. This implies that the stall inception process differs with the tip clearance size. The flow phenomenon in the stall inception leading to such difference has been investigated in this study. Pressure and velocity fields which were ensemble-averaged and phase-locked by the periodic multi-sampling technique were measured on the casing wall and downstream of the rotor, respectively. In addition, to capture the unsteady flow phenomena inside the rotor, “Instantaneous Casing Pressure Field Measurement” was carried out: instantaneous casing pressure fields in one rotor passage region were measured by 30 high response pressure transducers mounted on the casing wall. In order to investigate further details of near-stall flow field for the large tip clearance, DES (Detached Eddy Simulation) has been conducted using a computational mesh with 120 million points. The results are compared with those from previous studies for the small tip clearance. As expected, the measurement results show notable differences in the near-stall flow field between the two tip clearance cases. The results from the casing pressure measurement show that high pressure fluctuation appears on the pressure side near the rotor leading-edge in the large tip clearance case. In the result of the velocity field measurement downstream of the rotor, high turbulence intensity is found near the casing in the large tip clearance case. The numerical results reveal that the vortex breakdown occurs in the tip leakage vortex and induces the oscillation of the tip leakage vortex with its unsteady nature. The flow phenomena confirmed in the experimental results are clearly explained by considering the breakdown of the tip leakage vortex. The vortex breakdown gives rise to not only large blockage but also the rotating disturbance through the interaction of the fluctuating tip leakage vortex with the pressure surface of the adjacent blade, and governs the stall inception process.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


1997 ◽  
Vol 119 (1) ◽  
pp. 122-128 ◽  
Author(s):  
S. L. Puterbaugh ◽  
W. W. Copenhaver

An experimental investigation concerning tip flow field unsteadiness was performed for a high-performance, state-of-the-art transonic compressor rotor. Casing-mounted high frequency response pressure transducers were used to indicate both the ensemble averaged and time varying flow structure present in the tip region of the rotor at four different operating points at design speed. The ensemble averaged information revealed the shock structure as it evolved from a dual shock system at open throttle to an attached shock at peak efficiency to a detached orientation at near stall. Steady three-dimensional Navier Stokes analysis reveals the dominant flow structures in the tip region in support of the ensemble averaged measurements. A tip leakage vortex is evident at all operating points as regions of low static pressure and appears in the same location as the vortex found in the numerical solution. An unsteadiness parameter was calculated to quantify the unsteadiness in the tip cascade plane. In general, regions of peak unsteadiness appear near shocks and in the area interpreted as the shock-tip leakage vortex interaction. Local peaks of unsteadiness appear in mid-passage downstream of the shock-vortex interaction. Flow field features not evident in the ensemble averaged data are examined via a Navier-Stokes solution obtained at the near stall operating point.


2014 ◽  
Vol 30 (3) ◽  
pp. 307-313 ◽  
Author(s):  
R. Taghavi-Zenou ◽  
S. Abbasi ◽  
S. Eslami

ABSTRACTThis paper deals with tip leakage flow structure in subsonic axial compressor rotor blades row under different operating conditions. Analyses are based on flow simulation utilizing computational fluid dynamic technique. Three different circumstances at near stall condition are considered in this respect. Tip leakage flow frequency spectrum was studied through surveying instantaneous static pressure signals imposed on blades surfaces. Results at the highest flow rate, close to the stall condition, showed that the tip vortex flow fluctuates with a frequency close to the blade passing frequency. In addition, pressure signals remained unchanged with time. Moreover, equal pressure fluctuations at different passages guaranteed no peripheral disturbances. Tip leakage flow frequency decreased with reduction of the mass flow rate and its structure was changing with time. Spillage of the tip leakage flow from the blade leading edge occurred without any backflow in the trailing edge region. Consequently, various flow structures were observed within every passage between two adjacent blades. Further decrease in the mass flow rate provided conditions where the spilled flow ahead of the blade leading edge together with trailing edge backflow caused spike stall to occur. This latter phenomenon was accompanied by lower frequencies and higher amplitudes of the pressure signals. Further revolution of the rotor blade row caused the spike stall to eventuate to larger stall cells, which may be led to fully developed rotating stall.


Author(s):  
K. Yamada ◽  
K. Funazaki ◽  
H. Sasaki

The purpose of this study is to have a better understanding of the unsteady behavior of tip clearance flow at near-stall condition from a multi-passage simulation and to clarify the relation between such unsteadiness and rotating disturbance. This study is motivated by the following concern. A single passage simulation has revealed the occurrence of the tip leakage vortex breakdown at near-stall condition in a transonic axial compressor rotor, leading to the unsteadiness of the tip clearance flow field in the rotor passage. These unsteady flow phenomena were similar to those in the rotating instability, which is classified in one of the rotating disturbances. In other words it is possible that the tip leakage vortex breakdown produces a rotating disturbance such as the rotating instability. Three-dimensional unsteady RANS calculation was conducted to simulate the rotating disturbance in a transonic axial compressor rotor (NASA Rotor 37). The four-passage simulation was performed so as to capture a short length scale disturbance like the rotating instability and the spike-type stall inception. The simulation demonstrated that the unsteadiness of tip leakage vortex, which was derived from the vortex breakdown at near-stall condition, invoked the rotating disturbance in the rotor, which is similar to the rotating instability.


2000 ◽  
Vol 2000.53 (0) ◽  
pp. 1-2
Author(s):  
Kazutoyo YAMADA ◽  
Yoshinori TAGUCHI ◽  
Kazuhisa SAIKI ◽  
Masato FURUKAWA ◽  
Masahiro INOUE

Author(s):  
Masato Furukawa ◽  
Kazuhisa Saiki ◽  
Kazutoyo Yamada ◽  
Masahiro Inoue

The unsteady flow nature caused by the breakdown of the tip leakage vortex in an axial compressor rotor at near-stall conditions has been investigated by unsteady three-dimensional Navier-Stokes flow simulations. The simulations show that the spiral-type breakdown of the tip leakage vortex occurs inside the rotor passage at the near-stall conditions. Downstream of the breakdown onset, the tip leakage vortex twists and turns violently with time, thus interacting with the pressure surface of the adjacent blade. The motion of the vortex and its interaction with the pressure surface are cyclic. The vortex breakdown causes significant changes in the nature of the tip leakage vortex, which result in the anomalous phenomena in the time-averaged flow fields near the tip at the near-stall conditions: no rolling-up of the leakage vortex downstream of the rotor, disappearance of the casing wall pressure trough corresponding to the leakage vortex, large spread of the low-energy fluid accumulating on the pressure side, and large pressure fluctuation on the pressure side. As the flow rate is decreased, the movement of the tip leakage vortex due to its breakdown becomes so large that the leakage vortex interacts with the suction surface as well as the pressure one. The interaction with the suction surface gives rise to the three-dimensional separation of the suction surface boundary layer.


Author(s):  
Hongwei Ma ◽  
Haokang Jiang

This paper presents an experimental study of the three-dimensional turbulent flow field in the tip region of an axial flow compressor rotor passage at a near stall condition. The investigation was conducted in a low-speed large-scale compressor using a 3-component Laser Doppler Velocimetry and a high frequency pressure transducer. The measurement results indicate that a tip leakage vortex is produced very close to the leading edge, and becomes the strongest at about 10% axial chord from the leading edge. Breakdown of the vortex periodically occurs at about 1/3 chord, causing very strong turbulence in the radial direction. Flow separation happens on the tip suction surface at about half chord, prompting the corner vortex migrating toward the pressure side. Tangential migration of the low-energy fluids results in substantial flow blockage and turbulence in the rear of a rotor passage. Unsteady interactions among the tip leakage vortex, the separated vortex and the corner flow should contribute to the inception of the rotating stall in a compressor.


Author(s):  
Ke Shi ◽  
Song Fu

In the present study, Improved Delayed Detached Eddy Simulation (IDDES) based on k-ω-SST turbulence model is applied to study the unsteady phenomenon in a transonic compressor rotor. Particular emphasis is on the understanding of the complex underlying mechanisms for the flow unsteadiness caused by the interaction of passage shock, blade tip leakage vortex (BTLV) and the blade boundary layer. The sources of the significant unsteadiness of the flow are shown. At the lower span height, where the BTLV is far away, the shock wave ahead of the blade leading edge impinges on the suction surface boundary layer of the adjacent blade, causing the shock wave/boundary layer interaction (SWBLI). Boundary layer thickness grows, while flow separates after the interaction. Predicted by IDDES calculation, this shock-induced separation exists as a separation bubble. The flow reattaches very soon after separation. At the near tip region, the shock wave surface deforms due to the strong interaction between the shock and the BTLV. Oscillation of the shock wave surface near the vortex core infers an unsteady contend between the shock and the vortex. Iso-surfaces of the Q parameter are applied to identify the vortex and its structure. Normally, the vortex breakdown in the rotor passage will lead to stall. However, in the present transonic case, the vortex breakdown was observed even at the near peak efficiency point. While the mass flow rate decreases, the shock waves formed ahead of the rotor blade leading edge were pushed upstream, causing earlier casing wall boundary layer separation. Upstream moving behavior of the shock is considered a new stall process.


Sign in / Sign up

Export Citation Format

Share Document