scholarly journals Effects of the Injector Design on the Transfer Function of Premixed Swirling Flames

Author(s):  
M. Gatti ◽  
R. Gaudron ◽  
C. Mirat ◽  
T. Schuller

This article reports a series of experiments on the dynamics of lean-premixed swirl-stabilized flames submitted to harmonic flowrate modulations. The flame transfer function is analyzed for different injector designs with a specific focus on conditions leading to the lowest heat release rate response for a given flowrate perturbation. Experiments are carried out at a fixed equivalence ratio and fixed thermal power. Transfer functions are measured for radial swirling vanes by modifying the diameter of the swirler injection holes, the diameter of the injection tube at the top of the swirler and the end piece diameter of a central insert serving as a bluff body. It is found that the lowest response depends on the forcing frequency and is obtained when the injector design features the largest swirl number. The transfer function of the studied flames features a minimum gain value which decreases for increasing swirl levels. This minimum value is found to be independent of the velocity forcing level and is only controlled by the level of swirl. An excessive swirl level however leads to flash-back of the perturbed flames inside the injector. The way the flame behaves at this forcing frequency is analyzed for a set of injectors featuring the same radial swirling vane design and different injection tube diameters or conical end pieces. It is found that at the condition corresponding to the lowest FTF gain, i.e. the injector with the largest swirl number, the upper and lower parts of the flame contribute to out of phase heat release oscillations, but they also both feature a reduced level of fluctuations. When the swirl number decreases, the FTF gain increases due to a reduction of the phase lag between heat release rate oscillations in the lower and the upper parts of the flame and more importantly due to a general increase of the level of heat release oscillations in both parts of the flame.


Author(s):  
Bernhard C. Bobusch ◽  
Bernhard Ćosić ◽  
Jonas P. Moeck ◽  
Christian Oliver Paschereit

Equivalence ratio fluctuations are known to be one of the key factors controlling thermoacoustic stability in lean premixed gas turbine combustors. The mixing and thus the spatio-temporal evolution of these perturbations in the combustor flow is, however, difficult to account for in present low-order modeling approaches. To investigate this mechanism, experiments in an atmospheric combustion test rig are conducted. To assess the importance of equivalence ratio fluctuations in the present case, flame transfer functions for different injection positions are measured. By adding known perturbations in the fuel flow using a solenoid valve, the influence of equivalence ratio oscillations on the heat release rate is investigated. The spatially and temporally resolved equivalence ratio fluctuations in the reaction zone are measured using two optical chemiluminescence signals, captured with an intensified camera. A steady calibration measurement allows for the quantitative assessment of the equivalence ratio fluctuations in the flame. This information is used to obtain a mixing transfer function, which relates fluctuations in the fuel flow to corresponding fluctuations in the equivalence ratio of the flame. The current study focuses on the measurement of the global, spatially integrated, transfer function for equivalence ratio fluctuations and the corresponding modeling. In addition, the spatially resolved mixing transfer function is shown and discussed. The global mixing transfer function reveals that despite the good spatial mixing quality of the investigated generic burner, the ability to damp temporal fluctuations at low frequencies is rather poor. It is shown that the equivalence ratio fluctuations are the governing heat release rate oscillation response mechanism for this burner in the low-frequency regime. The global transfer function for equivalence ratio fluctuations derived from the measurements is characterized by a pronounced low-pass characteristic, which is in good agreement with the presented convection–diffusion mixing model.



2021 ◽  
Author(s):  
Meysam Sahafzadeh ◽  
Seth B. Dworkin ◽  
Larry W. Kostiuk

The stretched laminar flame model provides a convenient approach to embed realistic chemical kinetics when simulating turbulent premixed flames. When positive-only periodic strain rates are applied to a laminar flame there is a notable phase lag and diminished amplitude in heat release rate. Similar results have being observed with respect to the other component of stretch rate, namely the unsteady motion of a curved flame when the stretch rates are periodic about zero. Both cases showed that the heat release rate or consumption speed of these laminar-premixed flames vary significantly from the quasi-steady flamelet model. Deviation from quasi-steady behaviour increases as the unsteady flow time scale approaches the chemical time scale that is set by the stoichiometry. A challenge remains in how to use such results predictively for local and instantaneous consumption speed for small segments of turbulent flames where their unsteady stretch history is not periodic. This paper uses a frequency response analysis as a characterization tool to simplify the complex non-linear behaviour of premixed methane air flames for equivalence ratios from 1.0 down to 0.7, and frequencies from quasi-steady up to 2000 Hz using flame transfer functions. Various linear and nonlinear models were used to identify appropriate flame transfer functions for low and higher frequency regimes, as well as extend the predictive capabilities of these models. Linear models were only able to accurately predict the flame behaviour below a threshold of when the fluid and chemistry time scales are the same order of magnitude. Other proposed transfer functions were tested against arbitrary multi-frequency stretch inputs and were shown to be effective over the full range of frequencies.



Author(s):  
M. Gatti ◽  
R. Gaudron ◽  
C. Mirat ◽  
L. Zimmer ◽  
T. Schuller

The frequency response of premixed swirled flames is investigated by comparing their Transfer Function (FTF) between velocity and heat release rate fluctuations. The equivalence ratio and flow velocity are kept constant and four different swirling injectors are tested with increasing swirl numbers. The first injector features a vanishing low swirl number S = 0.20 and produces a flame anchored by the recirculating flow in the wake of a central bluff body. The three other swirling injectors produce highly swirled flows (S > 0.6) leading to a much larger internal recirculation region, which size increases with the swirl level. When operating the burner at S = 0.20, the FTF gain curve smoothly increases to reach a maximum and then smoothly decreases towards zero. For the highly swirled flames (S > 0.6), the FTF gain curve shows a succession of valleys and peaks attributed to interferences between axial and azimuthal velocity fluctuations at the injector outlet. The FTF phase-lag curves from the vanishing low and highly swirled flames are the same at low frequencies despite their large differences in flame length and flame aspect ratio. Deviations between the FTF phase lag curves of the different swirled flames start above the frequency corresponding to the first valley in the FTF gain of the highly swirled flames. Phase averaged images of the axial flow fields and of the flame chemiluminescence are used to interpret these features. At forcing frequencies corresponding to peak FTF gain values, the cold flow response of all flames investigated is dominated by large coherent vortical structures shed from the injector lip. At forcing frequencies corresponding to a valley in the FTF gain curve of the highly swirled flames, the formation of large coherent structures is strongly hindered in the cold flow response. These observations contrast with previous interpretations of the mechanisms associated to the low FTF response of swirled flames. It is finally found that for flames stabilized with a large swirl number, heat release rate fluctuations result both from large flame luminosity oscillations and large flame volume oscillations. For conditions leading to a small FTF gain value, both the flame luminosity and flame volume fluctuations are suppressed confirming the absence of strong perturbations within the flow at these frequencies. The experiments made in this work reveal a purely hydrodynamic mechanism at the origin of the low response of swirling flames at certain specific frequencies.



2021 ◽  
Author(s):  
Meysam Sahafzadeh ◽  
Seth B. Dworkin ◽  
Larry W. Kostiuk

The stretched laminar flame model provides a convenient approach to embed realistic chemical kinetics when simulating turbulent premixed flames. When positive-only periodic strain rates are applied to a laminar flame there is a notable phase lag and diminished amplitude in heat release rate. Similar results have being observed with respect to the other component of stretch rate, namely the unsteady motion of a curved flame when the stretch rates are periodic about zero. Both cases showed that the heat release rate or consumption speed of these laminar-premixed flames vary significantly from the quasi-steady flamelet model. Deviation from quasi-steady behaviour increases as the unsteady flow time scale approaches the chemical time scale that is set by the stoichiometry. A challenge remains in how to use such results predictively for local and instantaneous consumption speed for small segments of turbulent flames where their unsteady stretch history is not periodic. This paper uses a frequency response analysis as a characterization tool to simplify the complex non-linear behaviour of premixed methane air flames for equivalence ratios from 1.0 down to 0.7, and frequencies from quasi-steady up to 2000 Hz using flame transfer functions. Various linear and nonlinear models were used to identify appropriate flame transfer functions for low and higher frequency regimes, as well as extend the predictive capabilities of these models. Linear models were only able to accurately predict the flame behaviour below a threshold of when the fluid and chemistry time scales are the same order of magnitude. Other proposed transfer functions were tested against arbitrary multi-frequency stretch inputs and were shown to be effective over the full range of frequencies.



Author(s):  
Bernhard C. Bobusch ◽  
Bernhard Ćosić ◽  
Jonas P. Moeck ◽  
Christian Oliver Paschereit

Equivalence ratio fluctuations are known to be one of the key factors controlling thermoacoustic stability in lean premixed gas turbine combustors. The mixing and thus the spatiotemporal evolution of these perturbations in the combustor flow is, however, difficult to account for in present low-order modeling approaches. To investigate this mechanism, experiments in an atmospheric combustion test rig are conducted. To assess the importance of equivalence ratio fluctuations in the present case, flame transfer functions for different injection positions are measured. By adding known perturbations in the fuel flow using a solenoid valve, the influence of equivalence ratio oscillations on the heat release rate is investigated. The equivalence ratio fluctuations in the reaction zone are measured spatially and temporally resolved using two optical chemiluminescence signals, captured with an intensified camera. A steady calibration measurement allows for the quantitative assessment of the equivalence ratio fluctuations in the flame. This information is used to obtain a mixing transfer function, which relates fluctuations in the fuel flow to corresponding fluctuations in the equivalence ratio of the flame. The current study focuses on the measurement of the global, spatially integrated, transfer function for equivalence ratio fluctuations and the corresponding modeling. In addition, the spatially resolved mixing transfer function is shown and discussed. The global mixing transfer function reveals that, despite the good spatial mixing quality of the investigated generic burner, the ability to damp temporal fluctuations at low frequencies is rather poor. It is shown that the equivalence ratio fluctuations are the governing heat release rate oscillation response mechanism for this burner in the low-frequency regime. The global transfer function for equivalence ratio fluctuations derived from the measurements is characterized by a pronounced low-pass characteristic, which is in good agreement with the presented convection–diffusion mixing model.



Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1405
Author(s):  
Kai Deng ◽  
Shenglang Zhao ◽  
Chenyang Xue ◽  
Jinlin Hu ◽  
Yi Zhong ◽  
...  

The effects of plasma on the combustion instability of a methane swirling premixed flame under acoustic excitation were investigated. The flame image of OH planar laser-induced fluorescence and the fluctuation of flame transfer function showed the mechanism of plasma in combustion instability. The results show that when the acoustic frequency is less than 100 Hz, the gain in flame transfer function gradually increases with the frequency; when the acoustic frequency is 100~220 Hz, the flame transfer function shows a trend of first decreasing and then increasing with acoustic frequency. When the acoustic frequency is greater than 220 Hz, the flame transfer function gradually decreases with acoustic frequency. When the voltage exceeds the critical discharge value of 5.3 kV, the premixed gas is ionized and the heat release rate increases significantly, thereby reducing the gain in flame transfer function and enhancing flame stability. Plasma causes changes in the internal recirculation zone, compression, and curling degree of the flame, and thereby accelerates the rate of chemical reaction and leads to an increase in flame heat release rate. Eventually, the concentration of OH radicals changes, and the heat release rate changes accordingly, which ultimately changes the combustion instability of the swirling flame.



Author(s):  
C. P. Premchand ◽  
Manikandan Raghunathan ◽  
Midhun Raghunath ◽  
K. V. Reeja ◽  
R. I. Sujith ◽  
...  

Abstract The tonal sound production during thermoacoustic instability is detrimental to the components of gas turbine and rocket engines. Identifying the root cause and controlling this oscillatory instability would enable manufacturers to save in costs of power outages and maintenance. An optimal method is to identify the structures in the flow-field that are critical to tonal sound production and perform control measures to disrupt those “critical structures”. Passive control experiments were performed by injecting a secondary micro-jet of air onto the identified regions with critical structures in the flow-field of a bluff-body stabilized, dump, turbulent combustor. Simultaneous measurements such as unsteady pressure, velocity, local and global heat release rate fluctuations are acquired in the regime of thermoacoustic instability before and after control action. The tonal sound production in this combustor is accompanied by a periodic flapping of the shear layer present in the region between the dump plane (backward-facing step) and the leading edge of the bluff-body. We obtain the trajectory of Lagrangian saddle points that dictate the flow and flame dynamics in the shear layer during thermoacoustic instability accurately by computing Lagrangian Coherent Structures. Upon injecting a secondary micro-jet with a mass flow rate of only 4% of the primary flow, nearly 90% suppression in the amplitude of pressure fluctuations are observed. The suppression thus results in sound pressure levels comparable to those obtained during stable operation of the combustor. Using Morlet wavelet transform, we see that the coherence in the dominant frequency of pressure and heat release rate oscillations during thermoacoustic instability is affected by secondary injection. The disruption of saddle point trajectories breaks the positive feedback loop between pressure and heat release rate fluctuations resulting in the observed break of coherence. Wavelet transform of global heat release rate shows a redistribution of energy content from the dominant instability frequency (acoustic time scale) to other time scales.



2021 ◽  
Author(s):  
Nicholas C. W. Treleaven ◽  
André Fischer ◽  
Claus Lahiri ◽  
Max Staufer ◽  
Andrew Garmory ◽  
...  

Abstract The flame transfer function (FTF) of an industrial lean-burn fuel injector has been computed using large eddy simulation (LES) and compared to experimental measurements using the multi-microphone technique and OH* measurements. The flame transfer function relates the fluctuations of heat release in the combustion chamber to fluctuations of airflow through the fuel injector and is a critical part of thermoacoustic analysis of combustion systems. The multi-microphone method derives the FTF by forcing the flame acoustically, alternating from the upstream and downstream side. Simulations emulating this methodology have been completed using compressible large eddy simulations (LES). These simulations are also used to derive an FTF by measuring the fluctuations of mass flow rate and heat release rate directly which reduces the number of simulations per frequency to one, significantly reducing the simulation cost. Simulations acoustically forced from downstream are shown to result in a lower value of the FTF gain than simulations forced from upstream with a small change in phase, this is shown to be consistent with theory. Through using a slightly different definition of the FTF, this is also shown to be consistent with measurements of the heat release rate using OH* chemiluminescence however these results are inconsistent with the multi-microphone method result. The discrepancy comes from not having an accurate measurement of the acoustic impedance at the exit plane of the injector and from certain convective phenomena that alter the downstream velocity and pressure field with respect to the purely acoustic signal. All simulations show a lower gain in the FTF than the experiments but with good reproduction of phase. Previous work suggests this error is likely due to fluctuations of the fuel spray atomisation process due to the acoustic forcing which is not modelled in this study.



Author(s):  
Abhishek Kushwaha ◽  
Praveen Kasthuri ◽  
Samadhan A. Pawar ◽  
R. I. Sujith ◽  
Ianko Chterev ◽  
...  

Abstract In this study, we systematically analyze the effects of hydrogen enrichment in the well-known PRECCINSTA burner, a partially premixed swirl-stabilized methane/air combustor. Keeping the equivalence ratio and thermal power constant, we vary the hydrogen percentage in the fuel. Successive increments in hydrogen fuel fraction increase the adiabatic flame temperature and also shift the dominant frequencies of acoustic pressure fluctuations to higher values. Under hydrogen enrichment, we observe the emergence of periodicity in the combustor resulting from the interaction between acoustic modes. As a result of the interaction between these modes, the combustor exhibits a variety of dynamical states, including period-1 limit cycle oscillations (LCO), period-2 LCO, chaotic oscillations, and intermittency. The flame and flow behavior is found to be significantly different for each dynamical state. Analyzing the coupled behavior of the acoustic pressure and the heat release rate oscillations during the states of thermoacoustic instability, we report the occurrence of 2:1 frequency-locking during period-2 LCO, where two cycles of acoustic pressure lock with one cycle of the heat release rate. During period-1 LCO, we notice 1:1 frequency-locking, where both acoustic pressure and heat release rate repeat their behavior in every cycle.



Author(s):  
C. P. Premchand ◽  
Nitin B. George ◽  
Manikandan Raghunathan ◽  
Vishnu R. Unni ◽  
R. I. Sujith ◽  
...  

Abstract Experiments are performed in a partially-premixed bluff-body stabilized turbulent combustor by varying the mean flow velocity. Simultaneous measurements obtained for unsteady pressure, velocity and heat release rate are used to investigate the dynamic regimes of intermittency (10.1 m/s) and thermoacoustic instability (12.3 m/s). Using wavelet analysis, we show that during intermittency, modulation of heat release rate occurring at the acoustic frequency fa by the heat release rate occurring at the hydrodynamic frequency fh results in epochs of heat release rate fluctuations where the heat release is phase locked with the acoustic pressure. We also show that the flame position during intermittency and thermoacoustic instability are essentially dictated by saddle point dynamics in the dump plane and the leading edge of the bluff-body.



Sign in / Sign up

Export Citation Format

Share Document