scholarly journals A Comparison of the Transfer Functions and Flow Fields of Flames With Increasing Swirl Number

Author(s):  
M. Gatti ◽  
R. Gaudron ◽  
C. Mirat ◽  
L. Zimmer ◽  
T. Schuller

The frequency response of premixed swirled flames is investigated by comparing their Transfer Function (FTF) between velocity and heat release rate fluctuations. The equivalence ratio and flow velocity are kept constant and four different swirling injectors are tested with increasing swirl numbers. The first injector features a vanishing low swirl number S = 0.20 and produces a flame anchored by the recirculating flow in the wake of a central bluff body. The three other swirling injectors produce highly swirled flows (S > 0.6) leading to a much larger internal recirculation region, which size increases with the swirl level. When operating the burner at S = 0.20, the FTF gain curve smoothly increases to reach a maximum and then smoothly decreases towards zero. For the highly swirled flames (S > 0.6), the FTF gain curve shows a succession of valleys and peaks attributed to interferences between axial and azimuthal velocity fluctuations at the injector outlet. The FTF phase-lag curves from the vanishing low and highly swirled flames are the same at low frequencies despite their large differences in flame length and flame aspect ratio. Deviations between the FTF phase lag curves of the different swirled flames start above the frequency corresponding to the first valley in the FTF gain of the highly swirled flames. Phase averaged images of the axial flow fields and of the flame chemiluminescence are used to interpret these features. At forcing frequencies corresponding to peak FTF gain values, the cold flow response of all flames investigated is dominated by large coherent vortical structures shed from the injector lip. At forcing frequencies corresponding to a valley in the FTF gain curve of the highly swirled flames, the formation of large coherent structures is strongly hindered in the cold flow response. These observations contrast with previous interpretations of the mechanisms associated to the low FTF response of swirled flames. It is finally found that for flames stabilized with a large swirl number, heat release rate fluctuations result both from large flame luminosity oscillations and large flame volume oscillations. For conditions leading to a small FTF gain value, both the flame luminosity and flame volume fluctuations are suppressed confirming the absence of strong perturbations within the flow at these frequencies. The experiments made in this work reveal a purely hydrodynamic mechanism at the origin of the low response of swirling flames at certain specific frequencies.

Author(s):  
M. Gatti ◽  
R. Gaudron ◽  
C. Mirat ◽  
T. Schuller

This article reports a series of experiments on the dynamics of lean-premixed swirl-stabilized flames submitted to harmonic flowrate modulations. The flame transfer function is analyzed for different injector designs with a specific focus on conditions leading to the lowest heat release rate response for a given flowrate perturbation. Experiments are carried out at a fixed equivalence ratio and fixed thermal power. Transfer functions are measured for radial swirling vanes by modifying the diameter of the swirler injection holes, the diameter of the injection tube at the top of the swirler and the end piece diameter of a central insert serving as a bluff body. It is found that the lowest response depends on the forcing frequency and is obtained when the injector design features the largest swirl number. The transfer function of the studied flames features a minimum gain value which decreases for increasing swirl levels. This minimum value is found to be independent of the velocity forcing level and is only controlled by the level of swirl. An excessive swirl level however leads to flash-back of the perturbed flames inside the injector. The way the flame behaves at this forcing frequency is analyzed for a set of injectors featuring the same radial swirling vane design and different injection tube diameters or conical end pieces. It is found that at the condition corresponding to the lowest FTF gain, i.e. the injector with the largest swirl number, the upper and lower parts of the flame contribute to out of phase heat release oscillations, but they also both feature a reduced level of fluctuations. When the swirl number decreases, the FTF gain increases due to a reduction of the phase lag between heat release rate oscillations in the lower and the upper parts of the flame and more importantly due to a general increase of the level of heat release oscillations in both parts of the flame.


2021 ◽  
Author(s):  
Meysam Sahafzadeh ◽  
Seth B. Dworkin ◽  
Larry W. Kostiuk

The stretched laminar flame model provides a convenient approach to embed realistic chemical kinetics when simulating turbulent premixed flames. When positive-only periodic strain rates are applied to a laminar flame there is a notable phase lag and diminished amplitude in heat release rate. Similar results have being observed with respect to the other component of stretch rate, namely the unsteady motion of a curved flame when the stretch rates are periodic about zero. Both cases showed that the heat release rate or consumption speed of these laminar-premixed flames vary significantly from the quasi-steady flamelet model. Deviation from quasi-steady behaviour increases as the unsteady flow time scale approaches the chemical time scale that is set by the stoichiometry. A challenge remains in how to use such results predictively for local and instantaneous consumption speed for small segments of turbulent flames where their unsteady stretch history is not periodic. This paper uses a frequency response analysis as a characterization tool to simplify the complex non-linear behaviour of premixed methane air flames for equivalence ratios from 1.0 down to 0.7, and frequencies from quasi-steady up to 2000 Hz using flame transfer functions. Various linear and nonlinear models were used to identify appropriate flame transfer functions for low and higher frequency regimes, as well as extend the predictive capabilities of these models. Linear models were only able to accurately predict the flame behaviour below a threshold of when the fluid and chemistry time scales are the same order of magnitude. Other proposed transfer functions were tested against arbitrary multi-frequency stretch inputs and were shown to be effective over the full range of frequencies.


2019 ◽  
Vol 29 (6) ◽  
pp. 835-850 ◽  
Author(s):  
Daniel Schmeling ◽  
Johannes Bosbach

The influence of sensible heat release on the performance of displacement ventilation was studied in a generic laboratory representing the lower cabin of the German Aerospace Center (DLR)’s Next Generation Train. Tests at variable mean cabin temperatures were conducted with human subjects, thermal manikins and heating mats at different but constant heat release rates. Moreover, tests with thermal manikins and an adaptive heat release rate were performed. Flow fields, surface temperature distributions as well as local temperatures and velocities were evaluated. The study revealed that the shape of the heat sources is negligible if only global quantities, such as the global enthalpy flux or the heat removal efficiency, are evaluated. The latter was found to be independent of the amount of released heat. However, it strongly reacts to the choice of probe positions used for the mean cabin temperature. Regarding the comfort-relevant flow parameters, both the shape and the heat release rate are highly relevant to temperature stratifications and flow fields in the passenger zone. The manikins with adaptive heat release proved to be a major improvement in terms of realistic simulation of the human metabolism for investigations regarding the performance of ventilation systems. However, the determination of the mean cabin temperature receives increased relevance as it is prone to limit the closeness to reality.


2021 ◽  
Author(s):  
Meysam Sahafzadeh ◽  
Seth B. Dworkin ◽  
Larry W. Kostiuk

The stretched laminar flame model provides a convenient approach to embed realistic chemical kinetics when simulating turbulent premixed flames. When positive-only periodic strain rates are applied to a laminar flame there is a notable phase lag and diminished amplitude in heat release rate. Similar results have being observed with respect to the other component of stretch rate, namely the unsteady motion of a curved flame when the stretch rates are periodic about zero. Both cases showed that the heat release rate or consumption speed of these laminar-premixed flames vary significantly from the quasi-steady flamelet model. Deviation from quasi-steady behaviour increases as the unsteady flow time scale approaches the chemical time scale that is set by the stoichiometry. A challenge remains in how to use such results predictively for local and instantaneous consumption speed for small segments of turbulent flames where their unsteady stretch history is not periodic. This paper uses a frequency response analysis as a characterization tool to simplify the complex non-linear behaviour of premixed methane air flames for equivalence ratios from 1.0 down to 0.7, and frequencies from quasi-steady up to 2000 Hz using flame transfer functions. Various linear and nonlinear models were used to identify appropriate flame transfer functions for low and higher frequency regimes, as well as extend the predictive capabilities of these models. Linear models were only able to accurately predict the flame behaviour below a threshold of when the fluid and chemistry time scales are the same order of magnitude. Other proposed transfer functions were tested against arbitrary multi-frequency stretch inputs and were shown to be effective over the full range of frequencies.


2008 ◽  
Vol 18 (2) ◽  
pp. 111-124 ◽  
Author(s):  
C. Chen ◽  
L. Qu ◽  
Y. X. Yang ◽  
G. Q. Kang ◽  
W. K. Chow

2021 ◽  
Vol 11 (7) ◽  
pp. 3247
Author(s):  
Dong Hwan Kim ◽  
Chi Young Lee ◽  
Chang Bo Oh

In this study, the effects of discharge area and atomizing gas type in a twin-fluid atomizer on heptane pool fire-extinguishing performance were investigated under the heat release rate conditions of 1.17 and 5.23 kW in an enclosed chamber. Large and small full cone twin-fluid atomizers were prepared. Nitrogen and air were used as atomizing gases. With respect to the droplet size of water mist, as the water and air flow rates decreased and increased, respectively, the Sauter mean diameter (SMD) of the water mist decreased. The SMD of large and small atomizers were in the range of approximately 12–60 and 12–49 μm, respectively. With respect to the discharge area effect, the small atomizer exhibited a shorter extinguishing time, lower peak surface temperature, and higher minimum oxygen concentration than the large atomizer. Furthermore, it was observed that the effect of the discharge area on fire-extinguishing performance is dominant under certain flow rate conditions. With respect to the atomizing gas type effect, nitrogen and air appeared to exhibit nearly similar extinguishing times, peak surface temperatures, and minimum oxygen concentrations under most flow rate conditions. Based on the present and previous studies, it was revealed that the effect of atomizing gas type on fire-extinguishing performance is dependent on the relative positions of the discharged flow and fire source.


Sign in / Sign up

Export Citation Format

Share Document