Steady RANS of Flow and Heat Transfer in a Smooth and Pin-Finned U-Duct With a Trapezoidal Cross Section

Author(s):  
Kenny S.-Y. Hu ◽  
Xingkai Chi ◽  
Tom I-P. Shih ◽  
Minking Chyu ◽  
Michael Crawford

Steady RANS were performed to examine the ability of four turbulence models — realizable k-ε (k-ε), shear-stress transport (SST), Reynolds stress model with linear pressure strain (RSM-LPS), and stress-omega RSAM (RSM-τω) — to predict the turbulent flow and heat transfer in a U-duct with a trapezoidal cross section and with and without a staggered array of pin fins. Results generated for the heat-transfer coefficient (HTC) were compared with experimentally measured values. For the smooth U-duct, the maximum relative error in the averaged HTC in the up-leg is 2.5% for k-ε, SST, and RSM-τω and 9% for RSM-LPS. In the turn region, that maximum is 14.5% for RSM-τω, 29% for SST, and 50% for k-ε and RSM-LPS. In the down-leg, SST gave the best predictions and RSM-τω being a close second with maximum relative error less than 10%. The ability to predict the secondary flow in the turn region and the separated flow downstream of the turn dominated in how well the models predict the HTC. For the U-duct with pin fins, k-ε predicted the lowest and the least accurate HTCs, and SST and RSM-τω predicted the best. For k-ε, the maximum relative error in the averaged HTC is about 25%, whereas it is 15% for the SST and RSM-τω, and they occur in the turn. In the turn region, the staggered array of pin fins was found to behave like guide vanes in turning the flow. The pin fins also reduced the size of the separated region just after the turn.

Author(s):  
Kenny S.-Y. Hu ◽  
Xingkai Chi ◽  
Tom I.-P. Shih ◽  
Minking Chyu ◽  
Michael Crawford

Steady Reynolds-averaged Navier--Stokes (RANS) simulations were performed to examine the ability of four turbulence models—realizable k–ε (k–ε), shear-stress transport (SST), Reynolds stress model with linear pressure strain (RSM-LPS), and stress-omega RSM (RSM-τω)—to predict the turbulent flow and heat transfer in a trapezoidal U-duct with and without a staggered array of pin fins. Results generated for the heat-transfer coefficient (HTC) were compared with experimental measurements. For the smooth U-duct, the maximum relative error in the averaged HTC in the up-leg is 2.5% for k–ε, SST, and RSM-τω and 9% for RSM-LPS. In the turn region, the maximum is 50% for k–ε and RSM-LPS, 14.5% for RSM-τω, and 29% for SST. In the down-leg, SST gave the best predictions and RSM-τω being a close second with maximum relative error less than 10%. The ability to predict the separated flow downstream of the turn dominated the performance of the models. For the U-duct with pin fins, SST and RSM-τω predicted the best, and k–ε predicted the least accurate HTCs. For k–ε, the maximum relative error is about 25%, whereas it is 15% for the SST and RSM-τω, and they occur in the turn. In the turn region, the staggered array of pin fins was found to behave like guide vanes in turning the flow. The pin fins also reduced the size of the separated region just after the turn.


Author(s):  
H. Lan ◽  
B. F. Armaly ◽  
J. A. Drallmeier

Simulation of two-dimensional turbulent forced convection in a plane asymmetric diffuser is performed and the effect of diffuser angle on the flow and heat transfer is reported. This geometry is common in many heat exchanging devices and the convective heat transfer in it has not been examined. The flow field in this geometry, however, has received significant attention already and the results show that the υ2–f turbulence model provides a better comparison with measured velocity distributions than the k–ε turbulence models. This improvement in predictions is due to selecting different turbulent velocity scale and time scale for the eddy viscosity than what is used in conventional two-equation turbulence models. The results show that the diffuser angle influences significantly the flow field (separation and reattachment) and consequently, it must influence significantly the heat transfer. The υ2–f type turbulence models have been shown to provide good heat transfer results for separated flow, and for that reason a k-ε-ζ (or υ2–f type) turbulence model is used in this study. FLUENT 6.2.16 is used as the platform for these simulations and User Defined Functions (UDF) are developed to incorporate this turbulence model (which is not included in the commercial version of the FLUENT code at this time) into this CFD code. The UDF for the k-ε-ζ turbulence model is validated by comparisons with available measured velocity data in an asymmetric diffuser and with available measured heat transfer and velocity data in a backward facing step flow, and with heat transfer data for a normally-impinging jet flow with very good agreement between simulated and measured results.


Author(s):  
Dianliang Yang ◽  
Xiaobing Yu ◽  
Zhenping Feng

In this paper, numerical methods have been applied to the investigation of the effect of rotation on the blade tip leakage flow and heat transfer. Using the first stage rotor blade of GE-E3 engine high pressure turbine, both flat tip and squealer tip have been studied. The tip gap height is 1% of the blade height, and the groove depth of the squealer tip is 2% of the blade height. Heat transfer coefficient on tip surface obtained by using different turbulence models was compared with experimental results. And the grid independence study was carried out by using the Richardson extrapolation method. The effect of the blade rotation was studied in the following cases: 1) blade domain is rotating and shroud is stationary; 2) blade domain is stationary and shroud is rotating; and 3) both blade domain and shroud are stationary. In this approach, the effects of the relative motion of the endwall, the centrifugal force and the Coriolis force can be investigated respectively. By comparing the results of the three cases discussed, the effects of the blade rotation on tip leakage flow and heat transfer are revealed. It indicated that the main effect of the rotation on the tip leakage flow and heat transfer is resulted from the relative motion of the shroud, especially for the squealer tip blade.


2005 ◽  
Vol 127 (5) ◽  
pp. 865-871 ◽  
Author(s):  
Kazuaki Sugawara ◽  
Hiroyuki Yoshikawa ◽  
Terukazu Ota

The LES method was applied to analyze numerically an unsteady turbulent separated and reattached flow and heat transfer in a symmetric expansion plane channel of expansion ratio 2.0. The Smagorinsky model was used in the analysis and fundamental equations were discretized by means of the finite difference method, and their resulting finite difference equations were solved using the SMAC method. The calculations were conducted for Re=15,000. It is found that the present numerical results, in general, agree well with the previous experimental ones. The complicated vortical flow structures in the channel and their correlations with heat transfer characteristics are visualized through various fields of flow quantities.


Sign in / Sign up

Export Citation Format

Share Document