scholarly journals Effect of APS Flash Bond Coatings on Furnace Cycle Lifetime of Disks and Rods

Author(s):  
Bruce A. Pint ◽  
Michael J. Lance ◽  
J. Allen Haynes ◽  
Edward J. Gildersleeve ◽  
Sanjay Sampath

Abstract Air plasma sprayed (APS) flash coatings on high velocity oxygen fuel (HVOF) bond coatings are well known to extend the lifetime of thermal barrier coatings. Recent work compared flash coatings of NiCoCrAlY and NiCoCrAlYHfSi applied to both rods and disk substrates of alloy 247. For rod specimens, 100-h cycles were used at 1100°C in wet air. Both flash coatings significantly improved the lifetime compared to HVOF-only and VPS-only MCrAlY bond coatings with no statistical difference between the two flash coatings. For disk specimens tested in 1-h cycles at 1100°C in wet air, the NiCoCrAlY flash coating significantly outperformed an HVOF-only NiCoCrAlYHfSi bond coating and a NiCoCrAlYHfSi flash coating. The flash coatings formed a mixed oxide-metal zone that appeared to inhibit crack formation and extend lifetime. In addition to the flash coating increasing the bond coating roughness, the underlying HVOF layer acted as a source of Al for this intermixed zone and prevented the oxide from penetrating deeper into the bond coating. The lower Y+Hf level in the Y-only flash coating appeared to minimize oxidation in the flash layer, thereby increasing the benefit compared to a NiCoCrAlYHfSi flash coating.

Author(s):  
Bruce A. Pint ◽  
Michael J. Lance ◽  
J. Allen Haynes ◽  
Edward J. Gildersleeve ◽  
Sanjay Sampath

Abstract Air plasma sprayed (APS) flash coatings on high velocity oxygen fuel (HVOF) bond coatings are well known to extend the lifetime of thermal barrier coatings (TBCs). Recent work compared flash coatings of NiCoCrAlY and NiCoCrAlYHfSi applied to both rods and disk substrates of alloy 247. For rod specimens, 100 h cycles were used at 1100 °C in wet air. Both flash coatings significantly improved the lifetime compared to HVOF-only and vacuum plasma spray (VPS)-only MCrAlY bond coatings with no statistical difference between the two flash coatings. For disk specimens tested in 1 h cycles at 1100 °C in wet air, the NiCoCrAlY flash coating significantly outperformed an HVOF-only NiCoCrAlYHfSi bond coating and a NiCoCrAlYHfSi flash coating. The flash coatings formed a mixed oxide-metal zone that appeared to inhibit crack formation and therefore extend lifetime. In addition to the flash coating increasing the bond coating roughness, the underlying HVOF layer acted as a source of Al for this intermixed zone and prevented the oxide from penetrating deeper into the bond coating. The lower Y+Hf content in the Y-only flash coating appeared to minimize oxidation in the flash layer, thereby increasing the benefit compared to a NiCoCrAlYHfSi flash coating.


Author(s):  
Bruce A. Pint ◽  
Michael J. Lance ◽  
J. Allen Haynes

Several factors are being investigated that affect the performance of thermal barrier coatings (TBC) for use in land-based gas turbines where coatings are mainly thermally sprayed. This study examined high velocity oxygen fuel (HVOF), air plasma-sprayed (APS), and vacuum plasma-sprayed (VPS) MCrAlYHfSi bond coatings with APS YSZ top coatings at 900–1100 °C. For superalloy 247 substrates and VPS coatings tested in 1 h cycles at 1100 °C, removing 0.6 wt %Si had no effect on average lifetime in 1 h cycles at 1100 °C, but adding 0.3%Ti had a negative effect. Rod specimens were coated with APS, HVOF, and HVOF with an outer APS layer bond coating and tested in 100 h cycles in air + 10%H2O at 1100 °C. With an HVOF bond coating, initial results indicate that 12.5 mm diameter rod specimens have much shorter 100 h cycle lifetimes than disk specimens. Much longer lifetimes were obtained when the bond coating had an inner HVOF layer and outer APS layer.


Author(s):  
Bruce A. Pint ◽  
Michael J. Lance ◽  
J. Allen Haynes

Several factors are being investigated that affect the performance of thermal barrier coatings (TBC) for use in land-based gas turbines where coatings are mainly thermally sprayed. This study examined high velocity oxygen fuel (HVOF), air plasma sprayed (APS) and vacuum plasma sprayed (VPS) MCrAlYHfSi bond coatings with APS YSZ top coatings at 900°–1100°C. For superalloy 247 substrates and VPS coatings tested in 1-h cycles at 1100°C, removing 0.6wt.%Si had no effect on average lifetime in 1-h cycles at 1100°C, but adding 0.3%Ti had a negative effect. Rod specimens were coated with APS, HVOF and HVOF with an outer APS layer bond coating and tested in 100-h cycles in air+10%H2O at 1100°C. With an HVOF bond coating, initial results indicate that 12.5 mm diameter rod specimens have much shorter 100-h cycle lifetimes than disk specimens. Longer lifetimes were obtained when the bond coating had an inner HVOF layer and outer APS layer.


2021 ◽  
Vol 206 ◽  
pp. 116649
Author(s):  
Xun Zhang ◽  
Alan C.F. Cocks ◽  
Yoshifumi Okajima ◽  
Kazuma Takeno ◽  
Taiji Torigoe

2007 ◽  
Vol 14 (05) ◽  
pp. 935-943 ◽  
Author(s):  
L. YANG ◽  
Y. C. ZHOU ◽  
W. G. MAO ◽  
Q. X. LIU

In this paper, the impedance spectroscopy technique was employed to examine nondestructively the isothermal oxidation of air plasma sprayed (APS) thermal barrier coatings (TBCs) in air at 800°C. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were also used to characterize the microstructure evolution of TBCs. After oxidation, the thermally grown oxide (TGO), which was mainly composed of alumina as confirmed by EDX, formed at the upper ceramic coat/bond coat interface, the lower bond coat/substrate interface, and the bond coat. Impedance diagrams obtained from impedance measurements at room temperature were analyzed according to the equivalent circuit model proposed for the TBCs. Various observed electrical responses relating to the growth of oxides and the sintering of YSZ were explained by simulating the impedance spectra of the TBCs.


Author(s):  
M.A. Cole ◽  
R. Walker

Abstract Over the past 30 years, there has been considerable interest in the development of thermally sprayed thermal barrier coatings (TBCs) for aerospace and land based turbine applications. The use of TBCs enables higher operating temperatures, resulting in significant fuel efficiency savings. This paper reports on the development of dense Yttria Stabilised Zirconia (YSZ) thermal barrier coatings produced by High Velocity Oxygen Fuel (HVOF) spraying using acetylene as the fuel gas. The use of a high temperature gas erosion rig allowed the controlled evaluation of erodent size, velocity, impact angle, and temperature on coating performance. The work also covers the optimization of process parameters, including powder morphology, stand-off distance, oxygen to fuel ratio, gas pressures, and flowrates, and their effect on coating characteristics such as deposition efficiency, microhardness, and surface roughness.


Sign in / Sign up

Export Citation Format

Share Document