Testing Propeller Tip Modifications to Reduce Acoustic Noise Generation on a Quadcopter Propeller

Author(s):  
Kenneth Van Treuren ◽  
Charles Wisniewski

Abstract Electric propulsion is gaining popularity with over 100 electrically propelled aircraft in development worldwide. There is a growing interest in vertical lift vehicles either for package delivery or for urban air taxis. If these vehicles are to operate near population centers, they must be both quiet and efficient. The goal of this research is to develop a propeller that is more efficient and generates less noise than a stock DJI Phantom 2 quadcopter propeller. Since a large contribution of near field noise generation for a propeller comes from the tip vortex, reducing or minimizing this generated tip vortex was the main objective. After studying the literature on aircraft wing tip vortices and techniques proposed to minimize the wing tip vortex, seven promising tip treatments were selected and applied to a stock DJI Phantom 2 propeller in an attempt to reduce the tip vortex, and, thus, the generated noise. These tip treatments were: 1. Leading Edge Notch, 2. Trailing Edge Notch, 3. Hole, 4. Vortex Generators, 5. Tip Thread, 6. Trailing Edge Sawtooth, and 7. Reverse Half-Delta. An optimum design would be one that reduces near field noise while at the same time minimizes any additional required power. Several different configurations were tested for each tip treatment to determine the RPM and required power to hold 0.7 lbf thrust, which simulated a static hover condition. For each test, a radial traverse one inch behind the propeller permitted the measurement of the Sound Pressure Level (SPL) to find the maximum SPL and its radial location. Several configurations tested resulted in 8–10 dBA reductions in SPL when compared to the stock propeller, however, these configurations also resulted in an unacceptable increase in the power required to achieve the desired thrust. Thus, in these cases a decrease in SPL comes at the expense of power, a tradeoff that must be considered for any propeller modification. The most promising tip treatment tested was the Trailing Edge Notch at a radial location of 0.95 r/R with a Double Slot width and a Double Depth (DSDD). The DSDD configuration as tested reduced the SPL 7.2 dBA with an increase in power required of only 3.96% over the stock propeller. This tradeoff, while not the largest reduction in noise generation measured, seems to be an acceptable power increase for the decrease in SPL achieved. Smoke visualization confirms that the tip vortex is minimized for this configuration.

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Kenneth W. Van Treuren ◽  
Charles F. Wisniewski

Abstract If vertical lift vehicles are to operate near population centers, they must be both quiet and efficient. The goal of this research is to develop a propeller that is more efficient and generates less noise than a stock DJI Phantom 2 quadcopter propeller. Reducing the generated tip vortex was the main objective. After studying the literature, seven promising tip treatments were selected and applied to a stock DJI Phantom 2 propeller to reduce the tip vortex. Several different configurations were tested for each tip treatment to determine the rpm and required power to hold 0.7 lbf thrust, the static hover condition. For each test, operating at the hover condition, a radial traverse 1 in. behind the propeller permitted the measurement of the near field sound pressure level (SPL) to find the maximum SPL and its radial location. Several configurations tested resulted in 8–10 dBA reductions in SPL when compared to the stock propeller; however, these configurations also resulted in an unacceptable increase in the power required to achieve the desired thrust. The most promising tip treatment tested was the trailing edge (TE) notch at a radial location of 0.95 r/R with a double slot width and a double depth (DSDD). The DSDD configuration as tested reduced the SPL 7.2 dBA with an increase in power required of only 3.96% over the stock propeller. This tradeoff, while not the largest reduction in noise generation measured, had an acceptable power increase for the decrease in SPL achieved.


Author(s):  
Kenneth Van Treuren ◽  
Charles Wisniewski ◽  
Emily Cinnamon

Electric propulsion is being considered for a wide range of airframes from large commercial transports to the small Unmanned Aerial Systems (UASs). These electric systems, especially for small fixed wing UASs and quadcopters, need to be both efficient and quiet if they are to operate in an urban/populated environment or used in an Intelligence, Surveillance, and Reconnaissance (ISR) scenario. A propeller test facility was developed to record propeller performance and sound generation in the near field behind UAS propellers. The question of defining near and far field noise was studied by characterizing sound decay with distance from a UAS propeller. Defining near and far field noise is a subject that is not addressed well in the literature. Far field noise generally follows the 1/r decay rate and near field does not. Behind the propeller there are other flow field interactions that also change the decay rate, which this study illustrates. The data presented in this paper shows the difficulty in measuring sound around a UAS propeller and begins to resolve this topic. Previous UAS propeller design work by the authors resulted in propellers that were quieter in the near field and at the same time more efficient. Their studies showed RPM and tip vortex formation both contribute significantly to propeller sound generation. Disrupting the tip vortex formation should decrease the noise being generated. The current work extends these initial findings and examines the noise generation of a stock quadcopter propeller from a DJI Phantom 2 platform. One inch aft of the plane of rotation, this propeller, a 9.4 × 5.0, has a peak sound pressure level (SPL) of approximately 118 dBA under normal static operation producing 0.7 lbf of thrust at approximately 5900 RPM. Modifications were made to four stock propellers by cutting a notch perpendicular to the leading edge of the propeller at the 0.75 r/R and 0.87 r/R locations. The notches were of different depths and widths. Of the modifications, three of the configurations did not noticeably decrease the sound. However; the final configuration reduced the peak near field SPL to 111 dBA, a 6% reduction in dBA over the stock configuration corresponding to a greater than 50% reduction in sound generation. Smoke visualization confirms that a notch located at 0.87 r/R effectively disrupts the tip vortex formation, causing the tip vortices to dissipate much earlier than the stock propeller without the notch. Examining the noise frequency spectrums associated with both the stock and the modified propeller also confirm that the notch changes the magnitude and frequency distribution of the sound being generated.


Author(s):  
Micheál S O’Regan ◽  
Philip C Griffin ◽  
Trevor M Young

The near-field (up to three chord lengths) development of a wing-tip vortex is investigated both numerically and experimentally. The research was conducted in a medium speed wind tunnel on a NACA 0012 square tip half-wing at a Reynolds number of 3.2 × 105. A full Reynolds stress turbulence model with a hybrid unstructured grid was used to compute the wing-tip vortex in the near field while an x-wire anemometer and five-hole probe recorded the experimental results. The mean flow of the computed vortex was in good agreement with experiment as the circulation parameter was within 6% of the experimental value at x/ c = 0 for α = 10° and the crossflow velocity magnitude was within 1% of the experimental value at x/ c = 1 for α = 5°. The trajectory of the computed vortex was also in good agreement as it had moved inboard by the same amount (10% chord) as the experimental vortex at the last measurement location. The axial velocity excess is under predicted for α = 10°, whereas the velocity deficit is in relatively good agreement for α = 5°. The computed Reynolds shear stress component 〈 u′v′〉 is in good agreement with experiment at x/ c = 0 for α = 5°, but is greatly under predicted further downstream and at all locations for α = 10°. It is thought that a lack of local grid refinement in the vortex core and deficiencies in the Reynolds stress turbulence model may have led to errors in the mean flow and turbulence results respectively.


1982 ◽  
Vol 116 ◽  
pp. 379-391 ◽  
Author(s):  
Nagy S. Nosseir ◽  
Chih-Ming Ho

The aerodynamic noise generated by a subsonic jet impinging on a flat plate is studied from measurements of near-field and surface-pressure fluctuations. The far-field noise measured at 90° to the jet axis is found to be generated by two different physical mechanisms. One mechanism is the impinging of the large coherent structures on the plate, and the other is associated with the initial instability of the shear layer. These two sources of noise radiate to the far field via different acoustical paths.


Author(s):  
Jiangang Cai ◽  
Shutian Deng ◽  
Peng Xie ◽  
Chaoqun Liu

Sign in / Sign up

Export Citation Format

Share Document