Investigation of Steam Turbine Warm-Keeping by Use of Air

Author(s):  
Dennis Toebben ◽  
Piotr Luczynski ◽  
Manfred Wirsum ◽  
Wolfgang F. D. Mohr ◽  
Klaus Helbig

Abstract The changing energy landscape leads to a rising demand of more flexible power generation. A system for steam turbines warm-keeping provides the ability to shutdown conventional power plants during periods with a high share of renewable power. Simultaneously, these power plants are ready for grid stabilization on demand without an excessive consumption of lifetime during the start-up. One technical solution to keep a steam turbine warm is the use of hot air which is passed through the turbine. In addition, the air supply prevents corrosion during standstill and also enables the pre-warming after maintenance or long outages. This paper investigates the warm-keeping process of an intermediate pressure steam turbine (double shell configuration) through the use of dynamic numerical Finite-Elements (FE) simulations. As a representative test-case, warm-keeping calculations during a weekend shutdown (60h) are conducted to investigate the temperatures, their distribution and gradients within the rotor and the casing. For this purpose an improved numerical calculation model is developed. This detailed 3D FE model (including blades and vanes) uses heat transfer correlations conceived for warm-keeping with low air mass flows in gear mode operation. These analytical correlations take heat radiation, convection and contact heat transfer at the blade roots into account. The thermal boundary conditions at the outer walls of rotor and casing are determined by use of experimental natural cool-down data. The calculation model is finally compared and verified with this data set. The results offer valuable information about the thermal condition of the steam turbine for a subsequent start-up procedure. The warm-keeping operation with air is able to preserve hot start conditions for any time period. Most of the heat is transferred close to the steam inlet of the turbine, which is caused by similar flow directions of air and steam. Thus, temperatures in the last stages and in the casing stay well below material limits. This allows higher temperatures at the first blade groove of the turbine, which are highly loaded during a turbine startup and thus crucial to the lifetime.

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Dennis Toebben ◽  
Piotr Luczynski ◽  
Manfred Wirsum ◽  
Wolfgang F. D. Mohr ◽  
Klaus Helbig

AbstractThe changing energy landscape leads to a rising demand of more flexible power generation. A system for steam turbine (ST) warm-keeping provides the ability to shutdown conventional power plants during periods with a high share of renewable power. Simultaneously, these power plants are ready for grid stabilization on demand without an excessive consumption of lifetime during the start-up. One technical solution to keep a ST warm is the use of hot air, which is passed through the turbine. In addition, the air supply prevents corrosion during standstill and also enables the prewarming after maintenance or long outages. This paper investigates the warm-keeping process of an intermediate pressure (IP) ST (double-shell configuration) through the use of dynamic numerical finite element (FE) simulations. As a representative test case, warm-keeping calculations during a weekend shutdown (60 h) are conducted to investigate the temperatures, their distribution, and gradients within the rotor and the casing. For this purpose, an improved numerical calculation model is developed. This detailed three-dimensional FE model (including blades and vanes) uses heat transfer correlations conceived for warm-keeping with low air mass flows in gear mode operation. These analytical correlations take heat radiation, convection, and contact heat transfer at the blade roots into account. The thermal boundary conditions (BCs) at the outer walls of the rotor and casing are determined by use of experimental natural cool-down data. The calculation model is finally compared and verified with this dataset. The results offer valuable information about the thermal condition of the ST for a subsequent start-up procedure. The warm-keeping operation with air is able to preserve hot start conditions for any time period. Most of the heat is transferred close to the steam inlet of the turbine, which is caused by similar flow directions of air and steam. Thus, temperatures in the last stages and in the casing remain well below material limits. This allows higher temperatures at the first blade groove of the turbine, which is highly loaded during a turbine startup and thus crucial to the lifetime.


Author(s):  
Y. Kostenko ◽  
D. Veltmann ◽  
S. Hecker

Abstract Growing renewable energy generation share causes more irregular and more flexible operational regimes of conventional power plants than in the past. It leads to long periods without dispatch for several days or even weeks. As a consequence, the required pre-heating of the steam turbine leads to an extended power plant start-up time [1]. The current steam turbine Hot Standby Mode (HSM) contributes to a more flexible steam turbine operation and is a part of the Flex-Power Services™ portfolio [2]. HSM prevents the turbine components from cooling via heat supply using an electrical Trace Heating System (THS) after shutdowns [3]. The aim of the HSM is to enable faster start-up time after moderate standstills. HSM functionality can be extended to include the pre-heating option after longer standstills. This paper investigates pre-heating of the steam turbine with an electrical THS. At the beginning, it covers general aspects of flexible fossil power plant operation and point out the advantages of HSM. Afterwards the technology of the trace heating system and its application on steam turbines will be explained. In the next step the transient pre-heating process is analyzed and optimized using FEA, CFD and analytic calculations including validation considerations. Therefor a heat transfer correlation for flexible transient operation of the HSM was developed. A typical large steam turbine with an output of up to 300MW was investigated. Finally the results are summarized and an outlook is given. The results of heat transfer and conduction between and within turbine components are used to enable fast start-ups after long standstills or even outages with the benefit of minimal energy consumption. The solution is available for new apparatus as well as for the modernization of existing installations.


Author(s):  
Piotr Łuczyński ◽  
Lukas Pehle ◽  
Manfred Wirsum ◽  
Wolfgang F. D. Mohr ◽  
Jan Vogt ◽  
...  

Abstract Motivated by the urgent need for flexibility and start-up capability improvements of conventional power plants in addition to extending their life cycle, General Electric provides its customers with a product to pre-warm steam turbines using hot air. In this paper, the transient thermal and structural analyses of a 19-stage IP steam turbine in various start-up operating modes are discussed in detail. The presented research is based on previous investigations and utilises a hybrid (HFEM - numerical FEM and analytical) approach to efficiently determine the time-dependent temperature distribution in the components of the steam turbine. The simulation strategy of the HFEM model applies various analytical correlations to describe heat transfer in the turbine channel. These are developed by means of extensive unsteady multistage conjugate heat transfer simulations for both start-up turbine operation with steam and pre-warming operation with hot air. Moreover, the complex numerical setup of the HFEM model also considers the thermal contact resistance (TCR) on the surfaces between vane and casing as well as blades and rotor. Prior to the analysis of other turbine start-up operating modes, the typical start-up turbine process is calculated and validated against an experimental data as a benchmark for subsequent analysis. In addition to heat transfer correlations, the simulation of a turbine start-up from cold state uses an innovative analytic pressure model to allow for a consideration of condensation effects during first phase of start-up procedure.


Author(s):  
Dennis Toebben ◽  
Tobias Burgard ◽  
Sebastian Berg ◽  
Manfred Wirsum ◽  
Liu Pei ◽  
...  

Abstract Combined cycle power plants (CCPP) have many advantages compared to other fossil power plants: high efficiency, flexible operation, compact design, high potential for combined heat and power (CHP) applications and fewer emissions. However, fuel costs are relatively high compared to coal. Nevertheless, major qualities such as high operation flexibility and low emissions distinctly increase in relevance in the future, due to rising power generation from renewable energy sources. An accelerated start-up procedure of CCPPs increases the flexibility and reduces the NOx-emissions, which are relatively high in gas turbine low load operation. Such low load operation is required during a cold start of a CCPP in order to heat up the steam turbine. Thus, a warm-keeping of the thermal-limiting steam turbine results in an accelerated start-up times as well as reduced NOx-emissions and lifetime consumption. This paper presents a theoretical analysis of the potential of steam turbine warm-keeping by means of hot air for a typical CCPP, located in China. In this method, the hot air passes through the steam turbine while the power plant is shut off which enables hot start conditions at any time. In order to investigate an improved start-up procedure, a physical based simplified model of the water-steam cycle is developed on the basis of an operation data set. This model is used to simulate an improved power plant start-up, in which the steam turbine remains hot after at least 120 hours outage. The results show a start-up time reduction of approximately two-thirds in comparison to a conventional cold start. Furthermore, the potential of steam turbine warm-keeping is discussed with regards to the power output, NOx-emissions, start-up costs and lifetime consumption.


Author(s):  
Yasuhiro Yoshida ◽  
Kazunori Yamanaka ◽  
Atsushi Yamashita ◽  
Norihiro Iyanaga ◽  
Takuya Yoshida

In the fast start-up for combined cycle power plants (CCPP), the thermal stresses of the steam turbine rotor are generally controlled by the steam temperatures or flow rates by using gas turbines (GTs), steam turbines, and desuperheaters to avoid exceeding the thermal stress limits. However, this thermal stress sensitivity to steam temperatures and flow rates depends on the start-up sequence due to the relatively large time constants of the heat transfer response in the plant components. In this paper, a coordinated control method of gas turbines and steam turbine is proposed for thermal stress control, which takes into account the large time constants of the heat transfer response. The start-up processes are simulated in order to assess the effect of the coordinated control method. The simulation results of the plant start-ups after several different cool-down times show that the thermal stresses are stably controlled without exceeding the limits. In addition, the steam turbine start-up times are reduced by 22–28% compared with those of the cases where only steam turbine control is applied.


Author(s):  
Dieter Bohn ◽  
Christian Betcher ◽  
Karsten Kusterer ◽  
Kristof Weidtmann

Abstract As a result of an ever-increasing share of volatile renewable energies on the world wide power generation, conventional power plants face high technical challenges in terms of operational flexibility. Consequently, the number of startups and shutdowns grows, causing high thermal stresses in the thick-walled components and thus reduces lifetime and increases product costs. To fulfill the lifetime requirements, an accurate prediction of the metal temperature distribution inside these components is crucial. The objective of this paper is to understand the predominant basic heat transfer mechanisms during an IP steam turbine startup. Convective heat transport is described by means of HTC's as a function of dimensionless parameters, considering predominant flow structures. Based on steady-state and transient CHT- simulations the HTC's are derived during startup and compared to correlations from the literature. The simulations outline that the local HTC generally increases with increasing axial and circumferential Reynolds' number and is mostly influenced by vortex systems such as passage and horseshoe vortices. The HTC's at the turbine stage surfaces can be modeled with a high accuracy using a linear relation with respect to the total Reynolds' number. The comparison illustrates that the correlations underestimate the convective heat transfer by approx. 40% on average. Results show that special correlation-based approaches from the literature are a particularly efficient procedure to predict the heat transfer within steam turbines. in the design process. Overall, the computational effort can be significantly reduced by applying analytical correlations while maintaining a satisfactory accuracy.


Author(s):  
James Spelling ◽  
Markus Jo¨cker ◽  
Andrew Martin

Steam turbines in solar thermal power plants experience a much greater number of starts than those operating in base-load plants. In order to preserve the lifetime of the turbine whilst still allowing fast starts, it is of great interest to find ways to maintain the turbine temperature during idle periods. A dynamic model of a solar steam turbine has been elaborated, simulating both the heat conduction within the body and the heat exchange with the gland steam, main steam and the environment, allowing prediction of the temperatures within the turbine during off-design operation and standby. The model has been validated against 96h of measured data from the Andasol 1 power plant, giving an average error of 1.2% for key temperature measurements. The validated model was then used to evaluate a number of modifications that can be made to maintain the turbine temperature during idle periods. Heat blankets were shown to be the most effective measure for keeping the turbine casing warm, whereas increasing the gland steam temperature was most effective in maintaining the temperature of the rotor. By applying a combination of these measures the dispatchability of the turbine can be improved significantly: electrical output can be increased by up to 9.5% after a long cool-down and up to 9.8% after a short cool-down.


Author(s):  
James Spelling ◽  
Markus Jöcker ◽  
Andrew Martin

Steam turbines in solar thermal power plants experience a much greater number of starts than those operating in baseload plants. In order to preserve the lifetime of the turbine while still allowing fast starts, it is of great interest to find ways to maintain the turbine temperature during idle periods. A dynamic model of a solar steam turbine has been elaborated, simulating both the heat conduction within the body and the heat exchange with the gland steam, main steam and the environment, allowing prediction of the temperatures within the turbine during off-design operation and standby. The model has been validated against 96 h of measured data from the Andasol 1 power plant, giving an average error of 1.2% for key temperature measurements. The validated model was then used to evaluate a number of modifications that can be made to maintain the turbine temperature during idle periods. Heat blankets were shown to be the most effective measure for keeping the turbine casing warm, whereas increasing the gland steam temperature was most effective in maintaining the temperature of the rotor. By applying a combination of these measures the dispatchability of the turbine can be improved significantly: electrical output can be increased by up to 9.5% after a long cooldown and up to 9.8% after a short cooldown.


Author(s):  
Peter Stein ◽  
Gabriel Marinescu ◽  
Dominik Born ◽  
Michael Lerch

As part of the renewable energies and because of their low environmental impact, solar thermal power plants enjoy a wide acceptance in the public. In the past years, several projects have been launched to install plants even with a total power output level beyond 200 MW, which require large size steam turbines. Steam turbines of solar power plants face much more start-ups and shutdowns, compared to typical fossil type baseload machines. In order to provide the required lifetime of steam turbine components, i.e. in high- and intermediate-pressure modules, accurate calculation methods of temperatures and heat transfer coefficients are essential for natural cooling and start-up assessment. Beside rotors, also turbine inner casings face high thermal stresses, especially close to the inlet spiral. At these conditions high thermal stress occurs, which prevents the part to meet the technical requirements. The paper below gives a solution how to avoid this high stress and a calculation method for inner casings. A heat-shield introduced around the inlet spiral separates the active cooling domain of the turbine cavity relative to a narrow domain around the inlet spiral, where the fluid velocity is negligible. A method on how to simplify heat transfer calculations below the heat shield region is investigated and discussed. The results are verified vs. a CFD based sensitivity analysis. Finally a reduction of the peak stress on the configuration with heat-shield is demonstrated relative to the peak stress calculated without heat-shield.


Author(s):  
Rainer Quinkertz ◽  
Edwin Gobrecht

The growing share of renewable energies in the power industry coupled with increased deregulation has led to the need for additional operating flexibility of steam turbine units in both Combined Cycle and Steam Power Plants. Siemens steam turbine engineering and controls presently have several solutions to address various operating requirements: - Use of an automatic step program to perform startups allows operating comfort and repeatability. - 3 start-up modes give the operator the flexibility to start quickly to meet demand or slowly to conserve turbine life. - Several options for lifetime management are available. These options range from a basic counter of equivalent operating hours to a detailed fatigue calculation. - Restarting capabilities have been improved to allow a faster response following a trip or shutdown. - In addition to control of speed, load and pressure, special control functions provide alternative work split modes during transient conditions. - Optimum steam temperatures are calculated by the steam turbine control system to achieve optimum startup performance. - Siemens steam turbines are also capable of load rejection to house load, some even to operation at full speed, no load. Several plants are already equipped with these solutions and have provided data showing they are operating with shorter start-up times and improved load rejection capabilities. Finally Siemens of course continues to pursue future development.


Sign in / Sign up

Export Citation Format

Share Document