Thermal Modeling of a Solar Steam Turbine With a Focus on Start-Up Time Reduction

Author(s):  
James Spelling ◽  
Markus Jo¨cker ◽  
Andrew Martin

Steam turbines in solar thermal power plants experience a much greater number of starts than those operating in base-load plants. In order to preserve the lifetime of the turbine whilst still allowing fast starts, it is of great interest to find ways to maintain the turbine temperature during idle periods. A dynamic model of a solar steam turbine has been elaborated, simulating both the heat conduction within the body and the heat exchange with the gland steam, main steam and the environment, allowing prediction of the temperatures within the turbine during off-design operation and standby. The model has been validated against 96h of measured data from the Andasol 1 power plant, giving an average error of 1.2% for key temperature measurements. The validated model was then used to evaluate a number of modifications that can be made to maintain the turbine temperature during idle periods. Heat blankets were shown to be the most effective measure for keeping the turbine casing warm, whereas increasing the gland steam temperature was most effective in maintaining the temperature of the rotor. By applying a combination of these measures the dispatchability of the turbine can be improved significantly: electrical output can be increased by up to 9.5% after a long cool-down and up to 9.8% after a short cool-down.

Author(s):  
James Spelling ◽  
Markus Jöcker ◽  
Andrew Martin

Steam turbines in solar thermal power plants experience a much greater number of starts than those operating in baseload plants. In order to preserve the lifetime of the turbine while still allowing fast starts, it is of great interest to find ways to maintain the turbine temperature during idle periods. A dynamic model of a solar steam turbine has been elaborated, simulating both the heat conduction within the body and the heat exchange with the gland steam, main steam and the environment, allowing prediction of the temperatures within the turbine during off-design operation and standby. The model has been validated against 96 h of measured data from the Andasol 1 power plant, giving an average error of 1.2% for key temperature measurements. The validated model was then used to evaluate a number of modifications that can be made to maintain the turbine temperature during idle periods. Heat blankets were shown to be the most effective measure for keeping the turbine casing warm, whereas increasing the gland steam temperature was most effective in maintaining the temperature of the rotor. By applying a combination of these measures the dispatchability of the turbine can be improved significantly: electrical output can be increased by up to 9.5% after a long cooldown and up to 9.8% after a short cooldown.


Author(s):  
Yifeng Hu ◽  
Puning Jiang ◽  
Xingzhu Ye ◽  
Gang Chen ◽  
Junhui Zhang ◽  
...  

Nowadays, in order to accommodate electrical grids that include fluctuating supplies of green energy, more and more fossil power plants are increasingly required to start up and shut down frequently. The increased number of stress cycles leads to a significant reduction of lifetime. In this paper, numerous load cycles of steam turbine casing including various start up and shut down conditions were numerically investigated by using the finite element analysis (FEA). The total strain throughout the cycles was directly calculated by the elastic-plastic material model. The delta equivalent total strain was determined by rainflow count method, and the assessment of lifetime was evaluated.


Author(s):  
Yasuhiro Yoshida ◽  
Kazunori Yamanaka ◽  
Atsushi Yamashita ◽  
Norihiro Iyanaga ◽  
Takuya Yoshida

In the fast start-up for combined cycle power plants (CCPP), the thermal stresses of the steam turbine rotor are generally controlled by the steam temperatures or flow rates by using gas turbines (GTs), steam turbines, and desuperheaters to avoid exceeding the thermal stress limits. However, this thermal stress sensitivity to steam temperatures and flow rates depends on the start-up sequence due to the relatively large time constants of the heat transfer response in the plant components. In this paper, a coordinated control method of gas turbines and steam turbine is proposed for thermal stress control, which takes into account the large time constants of the heat transfer response. The start-up processes are simulated in order to assess the effect of the coordinated control method. The simulation results of the plant start-ups after several different cool-down times show that the thermal stresses are stably controlled without exceeding the limits. In addition, the steam turbine start-up times are reduced by 22–28% compared with those of the cases where only steam turbine control is applied.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4371-4376
Author(s):  
SUNGHO CHANG ◽  
GEEWOOK SONG ◽  
BUMSHIN KIM ◽  
JUNGSEB HYUN ◽  
JEONGSOO HA

The operational mode of thermal power plants has been changed from base load to duty cycle. From the changeover, fossil power plants cannot avoid frequent thermal transient states, for example, start up and stop, which results in thermal fatigue damage at the heavy section components. The rotor is the highest capital cost component in a steam turbine and requires long outage for replacing with a new one. For an optimized power plant operational life, inspection management of the rotor is necessary. It is known in general that the start-up and shutdown operations greatly affect the steam turbine life. The start-up operational condition is especially severe because of the rapid temperature and rotational speed increase, which causes damage and reduction of life of the main components life of the steam turbine. The start-up stress of a rotor which is directly related to life is composed of thermal and rotational stresses. The thermal stress is due to the variation of steam flow temperature and rotational stress is due to the rotational speed of the turbine. In this paper, the analysis method for the start-up stress of a rotor is proposed, which considers simultaneously temperature and rotational speed transition, and includes a case study regarding a 500MW fossil power plant steam turbine rotor. Also, the method of quantitative damage estimation for fatigue-creep damage to operational conditions, is described. The method can be applied to find weak points for fatigue-creep damage. Using the method, total life consumption can be obtained, and can be also be used for determining future operational modes and life extension of old fossil power units.


Author(s):  
Y. Kostenko ◽  
D. Veltmann ◽  
S. Hecker

Abstract Growing renewable energy generation share causes more irregular and more flexible operational regimes of conventional power plants than in the past. It leads to long periods without dispatch for several days or even weeks. As a consequence, the required pre-heating of the steam turbine leads to an extended power plant start-up time [1]. The current steam turbine Hot Standby Mode (HSM) contributes to a more flexible steam turbine operation and is a part of the Flex-Power Services™ portfolio [2]. HSM prevents the turbine components from cooling via heat supply using an electrical Trace Heating System (THS) after shutdowns [3]. The aim of the HSM is to enable faster start-up time after moderate standstills. HSM functionality can be extended to include the pre-heating option after longer standstills. This paper investigates pre-heating of the steam turbine with an electrical THS. At the beginning, it covers general aspects of flexible fossil power plant operation and point out the advantages of HSM. Afterwards the technology of the trace heating system and its application on steam turbines will be explained. In the next step the transient pre-heating process is analyzed and optimized using FEA, CFD and analytic calculations including validation considerations. Therefor a heat transfer correlation for flexible transient operation of the HSM was developed. A typical large steam turbine with an output of up to 300MW was investigated. Finally the results are summarized and an outlook is given. The results of heat transfer and conduction between and within turbine components are used to enable fast start-ups after long standstills or even outages with the benefit of minimal energy consumption. The solution is available for new apparatus as well as for the modernization of existing installations.


Author(s):  
Dennis Toebben ◽  
Piotr Luczynski ◽  
Manfred Wirsum ◽  
Wolfgang F. D. Mohr ◽  
Klaus Helbig

Abstract The changing energy landscape leads to a rising demand of more flexible power generation. A system for steam turbines warm-keeping provides the ability to shutdown conventional power plants during periods with a high share of renewable power. Simultaneously, these power plants are ready for grid stabilization on demand without an excessive consumption of lifetime during the start-up. One technical solution to keep a steam turbine warm is the use of hot air which is passed through the turbine. In addition, the air supply prevents corrosion during standstill and also enables the pre-warming after maintenance or long outages. This paper investigates the warm-keeping process of an intermediate pressure steam turbine (double shell configuration) through the use of dynamic numerical Finite-Elements (FE) simulations. As a representative test-case, warm-keeping calculations during a weekend shutdown (60h) are conducted to investigate the temperatures, their distribution and gradients within the rotor and the casing. For this purpose an improved numerical calculation model is developed. This detailed 3D FE model (including blades and vanes) uses heat transfer correlations conceived for warm-keeping with low air mass flows in gear mode operation. These analytical correlations take heat radiation, convection and contact heat transfer at the blade roots into account. The thermal boundary conditions at the outer walls of rotor and casing are determined by use of experimental natural cool-down data. The calculation model is finally compared and verified with this data set. The results offer valuable information about the thermal condition of the steam turbine for a subsequent start-up procedure. The warm-keeping operation with air is able to preserve hot start conditions for any time period. Most of the heat is transferred close to the steam inlet of the turbine, which is caused by similar flow directions of air and steam. Thus, temperatures in the last stages and in the casing stay well below material limits. This allows higher temperatures at the first blade groove of the turbine, which are highly loaded during a turbine startup and thus crucial to the lifetime.


Author(s):  
Yoshihiro Minami ◽  
Nobuhiro Osaki ◽  
Yuji Akaishi ◽  
William Newsom

As a result of high operation hours, older power plants have been subject to function and performance deterioration. As a result, there is an increased need to upgrade steam turbine units to improve performance and increase output. By studying the two performance enhancement upgrade projects listed below, you will be introduced to the design, manufacture and on-site installation work for the modification of a turbine generator. Also discussed is Mitsubishi’s method of harmonizing the new equipment/components with the existing non-OEM steam turbine. Both projects began in late 2003 and were successfully completed in early 2004 by Mitsubishi Heavy Industries, Ltd. (MHI). All delivery, installation and commissioning requirements were met and guaranteed performance was achieved for both units. • HP Turbine Component Upgrade – Pennsylvania, USA; • Modification of Turbine Casing – Korea.


Author(s):  
Piotr Łuczyński ◽  
Lukas Pehle ◽  
Manfred Wirsum ◽  
Wolfgang F. D. Mohr ◽  
Jan Vogt ◽  
...  

Abstract Motivated by the urgent need for flexibility and start-up capability improvements of conventional power plants in addition to extending their life cycle, General Electric provides its customers with a product to pre-warm steam turbines using hot air. In this paper, the transient thermal and structural analyses of a 19-stage IP steam turbine in various start-up operating modes are discussed in detail. The presented research is based on previous investigations and utilises a hybrid (HFEM - numerical FEM and analytical) approach to efficiently determine the time-dependent temperature distribution in the components of the steam turbine. The simulation strategy of the HFEM model applies various analytical correlations to describe heat transfer in the turbine channel. These are developed by means of extensive unsteady multistage conjugate heat transfer simulations for both start-up turbine operation with steam and pre-warming operation with hot air. Moreover, the complex numerical setup of the HFEM model also considers the thermal contact resistance (TCR) on the surfaces between vane and casing as well as blades and rotor. Prior to the analysis of other turbine start-up operating modes, the typical start-up turbine process is calculated and validated against an experimental data as a benchmark for subsequent analysis. In addition to heat transfer correlations, the simulation of a turbine start-up from cold state uses an innovative analytic pressure model to allow for a consideration of condensation effects during first phase of start-up procedure.


Author(s):  
Rainer Quinkertz ◽  
Edwin Gobrecht

The growing share of renewable energies in the power industry coupled with increased deregulation has led to the need for additional operating flexibility of steam turbine units in both Combined Cycle and Steam Power Plants. Siemens steam turbine engineering and controls presently have several solutions to address various operating requirements: - Use of an automatic step program to perform startups allows operating comfort and repeatability. - 3 start-up modes give the operator the flexibility to start quickly to meet demand or slowly to conserve turbine life. - Several options for lifetime management are available. These options range from a basic counter of equivalent operating hours to a detailed fatigue calculation. - Restarting capabilities have been improved to allow a faster response following a trip or shutdown. - In addition to control of speed, load and pressure, special control functions provide alternative work split modes during transient conditions. - Optimum steam temperatures are calculated by the steam turbine control system to achieve optimum startup performance. - Siemens steam turbines are also capable of load rejection to house load, some even to operation at full speed, no load. Several plants are already equipped with these solutions and have provided data showing they are operating with shorter start-up times and improved load rejection capabilities. Finally Siemens of course continues to pursue future development.


Author(s):  
Yifan Wu ◽  
Wei Li ◽  
Deren Sheng ◽  
Jianhong Chen ◽  
Zitao Yu

Clean energy is now developing rapidly, especially in the United States, China, the Britain and the European Union. To ensure the stability of power production and consumption, and to give higher priority to clean energy, it is essential for large power plants to implement peak shaving operation, which means that even the 1000 MW steam turbines in large plants will undertake peak shaving tasks for a long period of time. However, with the peak load regulation, the steam turbines operating in low capacity may be much more likely to cause faults. In this paper, aiming at peak load shaving, a fault diagnosis method of steam turbine vibration has been presented. The major models, namely hierarchy-KNN model on the basis of improved principal component analysis (Improved PCA-HKNN) has been discussed in detail. Additionally, a new fault diagnosis method has been proposed. By applying the PCA improved by information entropy, the vibration and thermal original data are decomposed and classified into a finite number of characteristic parameters and factor matrices. For the peak shaving power plants, the peak load shaving state involving their methods of operation and results of vibration would be elaborated further. Combined with the data and the operation state, the HKNN model is established to carry out the fault diagnosis. Finally, the efficiency and reliability of the improved PCA-HKNN model is discussed. It’s indicated that compared with the traditional method, especially handling the large data, this model enhances the convergence speed and the anti-interference ability of the neural network, reduces the training time and diagnosis time by more than 50%, improving the reliability of the diagnosis from 76% to 97%.


Sign in / Sign up

Export Citation Format

Share Document