scholarly journals Zonal Detached Eddy Simulation of the Fan-OGV Stage of a Modern Turbofan Engine

Author(s):  
Benjamin François ◽  
Raphaël Barrier ◽  
Cyril Polacsek

Abstract The present article deals with the Zonal Detached Eddy Simulation of the fan module of a modern turbofan engine. The fan module, tested at the AneCom facility, is equipped with rotating fan blades and stationary outlet guide vanes (OGV). The simulation was performed to capture the interaction of the turbulent fan wakes with the OGV walls. The final goal of this simulation is the prediction of the associated broadband noise, not adressed here. In this paper, only the aerodynamic aspects are treated. The simulation relies on a hybrid RANS/LES approach with a zonal strategy: the core airflow is treated in RANS while the bypass airflow is solved with the hybrid approach. Mesh criteria meeting both RANS/LES and acoustic requirements were fulfilled, leading to a mesh of 380 million cells. The simulation was performed during five revolutions and statistical convergence was reached. Inspections of the flow-fields highlight a consistent behaviour of the shielding function (border between RANS and LES solving areas) around the blade walls, at the trailing-edge and in the tip gap flow areas. Comparisons with performance and hot-wire measurements are also presented. Aerodynamic performance and radial evolution of averaged velocities on a plane in-between the fan and the OGV are well retrieved, both in shape and levels. For the turbulent quantities, the shape of the radial profiles are close to the measurements, with much better accuracy in the upper region compared to the RANS solution.

2012 ◽  
Vol 184-185 ◽  
pp. 18-23 ◽  
Author(s):  
Shuang Li Long ◽  
Hong Nie ◽  
Xin Xu

Simulation analysis and experiment research are performed on the aeroacoustic noise of a landing gear component in this paper. Detached Eddy Simulation (DES) is used to produce the flow field of the model. The Ffowcs-Williams/Hawkings (FW-H) equation is used to calculate the acoustic field. The sound field radiated from the model is measured in the acoustic wind tunnel. A comparison shows that the simulation results agree well with the experiment results under the acoustic far field condition. The results show that the noise radiated from the model is broadband noise. The directivity of the noise source is like a type of dipole. The wheel is the largest contributor and the strut is the least contributor to the landing gear noise. The results can provide some reference for low noise landing gear design.


Author(s):  
David Schowalter ◽  
Indradeep Ghosh ◽  
Sung-Eun Kim ◽  
Ahmad Haidari

Vortex-induced vibration of a circular cylinder with two degrees-of-freedom (2-DOF) is numerically studied using a mixed Lagrangian-Eulerian approach at several Reynolds numbers. The computations were carried out using a parallelized finite-volume Navier-Stokes solver based on a multidimensional linear reconstruction scheme that allows use of unstructured meshes. The effects of turbulence are modeled using an approach based on unsteady Reynolds-averaged Navier-Stokes (URANS) equations and a hybrid approach often referred to as detached eddy simulation (DES). In order to better understand the potential sources of the prediction error, a systematic verification and validation of the numerics and the physical models is attempted in this study with problems of progressively increasing complexity.


2012 ◽  
Vol 170-173 ◽  
pp. 3454-3459
Author(s):  
Long Shuang Li ◽  
Hong Nie ◽  
Xin Xu

Simulation analysis and experiment research are performed on the aeroacoustic noise of a landing gear component in this paper. Detached Eddy Simulation (DES) is used to produce the flow field of the model. The Ffowcs-Williams/Hawkings (FW-H) equation is used to calculate the acoustic field. The sound field radiated from the model is measured in the acoustic wind tunnel. A comparison shows that the simulation results agree well with the experiment results under the acoustic far field condition. The results show that the noise radiated from the model is broadband noise. The directivity of the noise source is like a type of dipole. The location between shock absorber and strut, shock absorber and bogie can induce the interaction noise which is presented by two energy peaks in the spectra. The shock absorber and the bogie is the main contributor while the strut is the least contributor to the total noise.


2013 ◽  
Vol 117 (1188) ◽  
pp. 213-231 ◽  
Author(s):  
J. Reneaux ◽  
V. Brunet ◽  
S. Esquieu ◽  
M. Meunier ◽  
S. Mouton

Abstract The engine/airframe integration design is one key differentiating factor for making efficient transport aircraft and this topic will become more important for future aircraft as the turbofan engine diameter is increased leading to a stronger engine-airframe interaction. Hopefully, the capabilities of advanced numerical simulations allow the involved complex phenomena to be taken into account and this is illustrated in this paper through several research studies: the use of the Reynolds averaged Navier-Stokes equations together with the drag extraction techniques to predict the drag, the simulation of unsteady complex interaction between the jet and the pylon with the zonal detached eddy simulation method, the pylon and nacelle design through multi disciplinary optimisation and the flow control technologies.


2019 ◽  
Vol 105 (4) ◽  
pp. 600-615
Author(s):  
Hoshang Sultani ◽  
Max Hieke ◽  
Otto von Estorff ◽  
Matthias Witte ◽  
Frank-Hendrik Wurm

The scope of the paper is the investigation of the hydrodynamic and hydroacoustic characteristic of a blade profile within a hubless propeller system. A hybrid procedure was applied in which the flow simulation results in terms of velocity and pressure fields were used as source terms for the hydroacoustics calculations. The Computational Fluid Dynamic (CFD) simulation of the complex 3D system was done using a scale resolving Detached Eddy Simulation (DES). The calculation of the acoustics was carried out using the Expansion about Incompressible Flow (EIF) approach. For the spatial discretization of the EIF equations the Finite Volume Moving Least Squares (FV-MLS) method was used. This method has promising features especially in the application of unstructured meshes. A first verification of the acoustic model is presented. For the validation of the used numerical methods extensive experimental hydrodynamics and hydroacoustics investigations of the hubless propeller system were carried out.


Author(s):  
Sheryl Grace ◽  
Ignacio Gonzalez-Martino ◽  
Damiano Casalino

Time-resolved simulations present a new opportunity for studying the disturbances responsible for the broadband interaction noise created by the fan stage. In this paper, two vane configurations from the source diagnostic test at the approach rotor speed were computed with PowerFLOW's very large-eddy simulation (VLES) method using two solution strategies: a coarser mesh near the rotor and a trip to trigger turbulent transition on the rotor; and a much finer mesh near the rotor with no trip. The simulated data allow for an investigation of the potential effect from the vane configuration and an in-depth study of the mean and turbulent flow in the interstage gap. A challenge related to post-processing of high-resolution simulations is discussed. Comparison of the flow quantities with previously obtained Reynolds Averaged Navier–Stokes simulation results indicates that little advantage is gained by running a lattice Boltmann method (LBM)/VLES to simply recover the gap flow parameters for use with a lower-order fan broadband interaction noise calculation method. The true benefit of the LBM/VLES is that the noise calculation can be directly and simultaneously completed with the flow simulation. This article is part of the theme issue ‘Frontiers of aeroacoustics research: theory, computation and experiment’.


Sign in / Sign up

Export Citation Format

Share Document