Part 2: Design Optimisation Strategies for a Fuel Spray Nozzle

Author(s):  
Thomas Andreou ◽  
Craig White ◽  
Konstantinos Kontis ◽  
Shahrokh Shahpar ◽  
Nicholas Brown

Abstract Reducing emissions and improving fuel economy has become a key target for advanced aircraft engine platforms. The competitive aviation market requires a drastic reduction in current aircraft emission levels, which leads to the requirement of optimising the entire combustion process. Lean burn pre-mixed systems are an efficient way of reducing NOx emissions. Starting from a datum blade generated in a companion paper, shape optimisation strategies applied to a fuel spray nozzle have been explored. Making use of three different design space parametrisation methods and several optimisation algorithms, an optimised passage has been generated. The optimised design achieves a considerable pressure loss reduction in comparison to the baseline design.

2021 ◽  
Author(s):  
Thomas Andreou ◽  
Craig White ◽  
Konstantinos Kontis ◽  
Shahrokh Shahpar ◽  
Nicholas Brown

2019 ◽  
Vol 177 (2) ◽  
pp. 151-155
Author(s):  
Ksenia SIADKOWSKA ◽  
Mirosław WENDEKER ◽  
Łukasz GRABOWSKI

The paper presents the research results of the injector construction with the modified injection nozzle. The injector is designed for a prototype opposed-piston aircraft diesel engine. The measurements were based on the Mie scattering technique. The conditions of the experiment corresponded to maximum loads similar to those occurring at the start. The measuring point was selected in line with the analysis of engine operating conditions: combustion chamber pressure at the moment of fuel delivery (6 MPa) and fuel pressure in the injection rail (140 MPa). The analysis focused on the average spray range and distribution, taking into account the differences between holes in the nozzle. As a result of the conducted research, the fuel spray range was defined with the determined parameters of injection. The fuel spray ranges inside the constant volume chamber at specific injection pressures and in the chamber were examined, and the obtained results were used to verify and optimize the combustion process in the designed opposed-piston two-stroke engine.


2019 ◽  
Vol 176 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Ireneusz PIELECHA ◽  
Wojciech BUESCHKE ◽  
Maciej SKOWRON ◽  
Łukasz FIEDKIEWICZ ◽  
Filip SZWAJCA ◽  
...  

Searching for further reduction of fuel consumption simultaneously with the reduction of toxic compounds emission new systems for lean-mixture combustion for SI engines are being discussed by many manufacturers. Within the European GasOn-Project (Gas Only Internal Combustion Engines) the two-stage combustion and Turbulent Jet Ignition concept for CNG-fuelled high speed engine has been proposed and thoroughly investigated where the reduction of gas consumption and increasing of engine efficiency together with the reduction of emission, especially CO2 was expected. In the investigated cases the lean-burn combustion process was conducted with selection of the most effective pre-combustion chamber. The experimental investigations have been performed on single-cylinder AVL5804 research engine, which has been modified to SI and CNG fuelling. For the analysis of the thermodynamic, operational and emission indexes very advanced equipment has been applied. Based on the measuring results achieved for different pre-chamber config-urations the extended methodology of polioptimization by pre-chamber selection and the shape of main chamber in the piston crown for proposed combustion system has been described and discussed. The results of the three versions of the optimization methods have been comparatively summarized in conclusions.


2019 ◽  
Vol 252 ◽  
pp. 05007 ◽  
Author(s):  
Łukasz Grabowski ◽  
Ksenia Siadkowska ◽  
Krzysztof Skiba

This paper reports the results of simulation works of Rotax 912 aircraft piston engine, which is a basic unit in most ultra-light aircrafts. The method for preparing the model aircraft engine operation process was presented. Simulation tests were carried out in the AVL Boost programme. The programme allows a full use of zero-dimensional and one-dimensional modelling. It also allows a comparison of other engine models. The developed model has enabled us to simulate the flow of air through the inlet pipes, carburettors, valves and combustion process. The preparation of the model required us to enter parameters that are not available in the manufacturer's catalogue, therefore, necessary measurements and analysis of the engine parts were carried out on a laboratory bench. The calculations in the AVL Boost programme were carried out in the conditions determined for the selected BMEP values with the objective of characterising the engine performance by determining its power, torque and fuel consumption.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1566 ◽  
Author(s):  
S.D. Martinez-Boggio ◽  
S.S. Merola ◽  
P. Teixeira Lacava ◽  
A. Irimescu ◽  
P.L. Curto-Risso

To mitigate the increasing concentration of carbon dioxide in the atmosphere, energy production processes must change from fossil to renewable resources. Bioenergy utilization from agricultural residues can be a step towards achieving this goal. Syngas (fuel obtained from biomass gasification) has been proved to have the potential of replacing fossil fuels in stationary internal combustion engines (ICEs). The processes associated with switching from traditional fuels to alternatives have always led to intense research efforts in order to have a broad understanding of the behavior of the engine in all operating conditions. In particular, attention needs to be focused on fuels containing relatively high concentrations of hydrogen, due to its faster propagation speed with respect to traditional fossil energy sources. Therefore, a combustion study was performed in a research optical SI engine, for a comparison between a well-established fuel such as methane (the main component of natural gas) and syngas. The main goal of this work is to study the effect of inert gases in the fuel mixture and that of air dilution during lean fuelling. Thus, two pure syngas blends (mixtures of CO and H2) and their respective diluted mixtures (CO and H2 with 50vol% of inert gases, CO2 and N2) were tested in several air-fuel ratios (stoichiometric to lean burn conditions). Initially, the combustion process was studied in detail by traditional thermodynamic analysis and then optical diagnostics were applied thanks to the optical access through the piston crown. Specifically, images were taken in the UV-visible spectrum of the entire cycle to follow the propagation of the flame front. The results show that hydrogen promotes flame propagation and reduces its distortion, as well as resulting in flames evolving closer to the spark plug. All syngas blends show a stable combustion process, even in conditions of high air and fuel dilution. In the leanest case, real syngas mixtures present a decrease in terms of performance due to significant reduction in volumetric efficiency. However, this condition strongly decreases pollutant emissions, with nitrogen oxide (NOx) concentrations almost negligible.


1995 ◽  
Author(s):  
Sang-Joon Lee ◽  
Sungoh Ra ◽  
Youngsik Song ◽  
Jongtai Lee

Author(s):  
Fridolin Unfug ◽  
Uwe Wagner ◽  
Kai W. Beck ◽  
Juergen Pfeil ◽  
Ulf Waldenmaier ◽  
...  

To fulfil strict emission regulations and the need for higher efficiency of future Diesel engines require an optimized combustion process. Optical investigations represent a powerful tool for getting a better understanding of the ongoing processes. For medium speed Diesel engines, optical investigations are relatively rare or not available. The “Institut für Kolbenmaschinen” (IFKM) and MAN Diesel & Turbo SE performed extensive optical in-situ investigations of the injection and combustion process of a MAN 32/44 CR single cylinder medium speed Diesel engine that provide previously unavailable insights into the ongoing processes. The optical investigations aimed on fuel spray visualization, high-speed soot luminescence measurement and two colour pyrometry applied for five combustion chamber regions. To apply the optical measurement techniques, two optical accesses were designed. Access no. 1 is placed near the cylinder liner. Access no. 2 is located close to the injector in a 46° angle to the cylinder vertical axis. An insert was used which consists of an illumination port and a visualization endoscope. Additionally some special nozzle designs were used beside the standard nozzle, which have one separated nozzle hole. This enables a simultaneous view from both optical accesses on the same flame cone. For Mie-Scattering investigation a pulsed Nd:YAG-Laser with 532 nm wavelength was used for illumination and a CCD-camera with an upstream 532 nm optical filter was used for visualization. This combination allows observing the liquid fuel distribution even after start of combustion. Penetration depth of liquid fuel spray was analysed for different swirl numbers, intake manifold pressures, injection timings and injection pressures. High-speed flame visualization was done by two CMOS cameras which were mounted at two different optical accesses with view on the same flame cone. Due to this application a simultaneous measurement of the flame distribution of two different views was possible. This enables a 3-dimensional investigation of the flame propagation process. In addition, the advanced two colour pyrometry was applied for five different regions of the same flame cone. Due to a calibration after each measurement the absolute radiant flux can be calculated and thus the absolute temperature and soot concentration. With this procedure it was possible to give a real temperature and soot concentration distribution of the flame cone. To provide more detailed information about the combustion process, selected engine operation points were simulated with a modified version of the CFD code KIVA3v-Release2 at the IFKM. The simulated results were compared to the measured data.


Sign in / Sign up

Export Citation Format

Share Document