Impact of Hydrogen Addition on the Thermoacoustic Instability and Precessing Vortex Core Dynamics in a CH4/H2/air Technically Premixed Combustor

2021 ◽  
Author(s):  
Anindya Datta ◽  
Saarthak Gupta ◽  
Santosh Hemchandra ◽  
Ianko Chterev ◽  
Isaac Boxx

Abstract We study the impact of H2 enrichment on the unsteady flow dynamics and thermoacoustic instability in the single nozzle PRECCINSTA swirl combustor. We analyze data from two operating modes, premixed (PM) and technically premixed (TPM). The experiments were performed at atmospheric conditions with H2/CH4 fuel mixtures at a global equivalence ratio of 0.65 while maintaining a constant thermal power of 20 kW. We examine the effect of H2 addition on the flow dynamics by analyzing cases with three fuel compositions: 0% H2, 20% H2 and 50% H2 in both operating modes. A new multi resolution modal decomposition method, using a combination of wavelet transforms and proper orthogonal decomposition (WPOD) of the experimental time resolved high speed flow velocity and OH-PLIF measurements is performed. Thermoacoustic oscillations are observed in the TPM operating mode alone. WPOD results for the 0% H2 TPM operating mode case reveals intermittent helical PVC oscillations along with axi-symmetric hydrodynamic flow oscillations due to the thermoacoustic oscillation. These oscillations cause local flame extinction near the nozzle centrebody resulting in liftoff. A precessing vortex core (PVC) oscillation develops in the flow that enables intermittent flame reattachment and results in intermittent thermoacoustic oscillations in this case. In the 0% H2 PM case, the flame remains lifted off of the centrebody despite the presence of PVC oscillations in this case as well. H2 enrichment results in the suppression of flame lift-off and the PVC in both operating modes. We show from flow strain rate statistics and extinction strain rate calculations that the increase of the latter with H2 addition, allows the flame to stabilize in the region near the centrebody where the pure CH4 cases show lift off. The lack of thermoacoustic oscillations in the PM operating mode shows that the primary heat release driving mechanism is due to fuel-air ratio oscillation that the thermoacoustic oscillation generates. The time averaged flow fields and the emergence of the PVC when the flame is lifted off, together suggest that PVC oscillations are caused by the separation between the vortex breakdown bubble and the wake behind the centrebody, as suggested by prior computational studies.

Author(s):  
Anindya Datta ◽  
Saarthak Gupta ◽  
Ianko Chterev ◽  
Isaac Boxx ◽  
Santosh Hemchandra

Abstract We study the impact of H2 enrichment on the unsteady flow dynamics and thermoacoustic instability in PRECCINSTA swirl combustor. The experiments were performed at atmospheric conditions with H2/CH4 fuel mixtures at a global equivalence ratio of 0.65 and a constant thermal power of 20 kW. We analyze data with three fuel compositions: 0%, 20% and 50% H2 in two operating modes, premixed (PM) and technically premixed (TPM). A new multi-resolution modal decomposition method, using a combination of wavelet transforms and proper orthogonal decomposition (WPOD) is performed on time resolved flow velocity and OHPLIF measurements. Thermoacoustic oscillations are observed in the TPM operating mode alone, indicating that the primary heat release driving mechanism is due to fuel-air ratio oscillations. WPOD results for the 0% H2 TPM case reveals intermittent helical PVC oscillations along with axisymmetric hydrodynamic flow oscillations due to the thermoacoustic oscillations. These oscillations cause local flame extinction near the nozzle centrebody resulting in liftoff. A precessing vortex core (PVC) then develops in the flow and enables intermittent flame reattachment. In the 0% H2 premixed case, the flame remains lifted off the centrebody despite the presence of PVC oscillations. H2 enrichment results in the suppression of flame lift-off and the PVC in both operating modes. We show from flow strain rate statistics and extinction strain rate calculations that the increase of the latter with H2 addition, allows the flame to stabilize in the region near the centrebody where the pure CH4 cases show lift off.


2016 ◽  
Vol 168 ◽  
pp. 228-239 ◽  
Author(s):  
Qiang An ◽  
Wing Yin Kwong ◽  
Benjamin D. Geraedts ◽  
Adam M. Steinberg

Author(s):  
Finn Lückoff ◽  
Moritz Sieber ◽  
Kilian Oberleithner

In this study, we apply periodic flow excitation of the PVC at the centerbody of a generic swirl-stabilized combustor to investigate the impact of the precessing vortex core (PVC) on flame shape and flame dynamics. Previous studies revealed considerable influence of the PVC on combustion properties such as flame dynamics and fuel/air mixing. We employ time-resolved OH*-chemiluminescence and pressure measurements to investigate the influence of the PVC on flame dynamics and flame shape transition. The PVC is typically present in flames which are detached from the burner outlet. This lift-off is observed for increasingly lean mixtures in this study. With the help of the PVC actuation, studied in this work, the transition point between attached and detached flame is shifted towards richer mixtures. Moreover, the dynamics of heat release rate fluctuations that are related to PVC and thermoacoustic instabilities are extracted from the OH*-chemiluminescence data. This reveals a considerable damping of the thermoacoustic oscillations due to the PVC actuation under technically premixed conditions and the rise of additional modes due to the interaction of both dynamics.


Author(s):  
Hamid Ait Abderrahamane ◽  
Kamran Siddiqui ◽  
Georgios Vatistas

This paper deals with the dynamics of polygonal shapes resulting from the symmetry breaking of hollow-vortex core in a shallow water layer produced by a rotating disk near the bottom within a stationary cylindrical container. These polygonal shapes are investigated through image analysis. It is found that a given polygon rotates at the frequency close to one–third of the corresponding disk frequency and the flow dynamics around the apexes of the polygon is characterized by a frequency which is close to one–third of the frequency of the given polygonal pattern. The results also suggest a possible resonance between the satellite vortices at the apexes of the patterns and the bulk flow.


Author(s):  
P Yazdabadi ◽  
A J Griffiths ◽  
N Syred

Experimental investigations have been carried out to examine the effect of downstream pipework configurations on the precessing vortex core (PVC) generated within the exhaust region of a cyclone dust separator. Characterization of the PVC using a non-dimensionalized frequency parameter (NDFP) was used to determine the relationship between Reynolds number and geometrical swirl number of the cyclone. The results show that the NDFP tends towards an asymptotic value for Reynolds numbers of about 50 000 and high swirl numbers (> 3.043). This value is reached earlier with lower swirl numbers. It was concluded that any exhaust pipework configuration produced a significant drop in the PVC frequency, and certain configurations either delayed or promoted the development of the PVC.


2021 ◽  
Author(s):  
Arnab Mukherjee ◽  
Nishanth Muthichur ◽  
Chaitali More ◽  
Saarthak Gupta ◽  
Santosh Hemchandra

Author(s):  
Mark Frederick ◽  
Kiran Manoharan ◽  
Joshua Dudash ◽  
Brian Brubaker ◽  
Santosh Hemchandra ◽  
...  

Combustion instability, the coupling between flame heat release rate oscillations and combustor acoustics, is a significant issue in the operation of gas turbine combustors. This coupling is often driven by oscillations in the flow field. Shear layer roll-up, in particular, has been shown to drive longitudinal combustion instability in a number of systems, including both laboratory and industrial combustors. One method for suppressing combustion instability would be to suppress the receptivity of the shear layer to acoustic oscillations, severing the coupling mechanism between the acoustics and the flame. Previous work suggested that the existence of a precessing vortex core (PVC) may suppress the receptivity of the shear layer, and the goal of this study is to first, confirm that this suppression is occurring, and second, understand the mechanism by which the PVC suppresses the shear layer receptivity. In this paper, we couple experiment with linear stability analysis to determine whether a PVC can suppress shear layer receptivity to longitudinal acoustic modes in a nonreacting swirling flow at a range of swirl numbers. The shear layer response to the longitudinal acoustic forcing manifests as an m = 0 mode since the acoustic field is axisymmetric. The PVC has been shown both in experiment and linear stability analysis to have m = 1 and m = −1 modal content. By comparing the relative magnitude of the m = 0 and m = −1,1 modes, we quantify the impact that the PVC has on the shear layer response. The mechanism for shear layer response is determined using companion forced response analysis, where the shear layer disturbance growth rates mirror the experimental results. Differences in shear layer thickness and azimuthal velocity profiles drive the suppression of the shear layer receptivity to acoustic forcing.


Author(s):  
Kilian Oberleithner ◽  
Steffen Terhaar ◽  
Lothar Rukes ◽  
Christian Oliver Paschereit

Isothermal swirling jets undergoing vortex breakdown are known to be susceptible to self-excited flow oscillations. They manifest in a precessing vortex core and synchronized growth of large-scale vortical structures. Recent theoretical studies associate these dynamics with the onset of a global hydrodynamic instability mode. These global modes also emerge in reacting flows, thereby crucially affecting the mixing characteristics and the flame dynamics. It is, however, observed that these self-excited flow oscillations are often suppressed in the reacting flow, while they are clearly present at isothermal conditions. This study provides strong evidence that the suppression of the precessing vortex core is caused by density stratification created by the flame. This mechanism is revealed by considering two reacting flow configurations: The first configuration represents a detached steam-diluted natural gas swirl-stabilized flame featuring a strong precessing vortex core. The second represents a natural gas swirl-stabilized flame anchoring near the combustor inlet, which does not exhibit self-excited oscillations. Experiments are conducted in a generic combustor test rig and the flow dynamics are captured using PIV and LDA. The corresponding density fields are approximated from the seeding density using a quantitative light sheet technique. The experimental results are compared to the global instability properties derived from hydrodynamic linear stability theory. Excellent agreement between the theoretically derived global mode frequency and measured precession frequency provide sufficient evidence to conclude that the self-excited oscillations are, indeed, driven by a global hydrodynamic instability. The effect of the density field on the global instability is studied explicitly by performing the analysis with and without density stratification. It turns out that the significant change on instability is caused by the radial density gradients in the inner recirculation zone and not by the change of the mean velocity field. The present work provides a theoretical framework to analyze the global hydrodynamic instability of realistic combustion configurations. It allows relating the flame position and the resulting density field to the emergence of a precessing vortex core.


2016 ◽  
Author(s):  
Denis Porfiriev ◽  
Anastasiya Gorbunova ◽  
Igor Zavershinsky ◽  
Semen Sugak ◽  
Nonna Molevich

Sign in / Sign up

Export Citation Format

Share Document