Open Loop Active Control of Combustion Noise in Gas Turbine Combustor

Author(s):  
Srihari Dinesh Kumar Juvva ◽  
Sathesh Mariappan ◽  
Abhijit Kushari

The presented study is on a laboratory scaled industrial gas turbine combustor of intensity 25MW/m3 atm, where an open loop active control technique is investigated. Combustion noise is classified as direct and in-direct combustion noise. The present study is focused on the investigation of direct combustion noise. It occurs when the volume of the gas fluctuates due to the fluctuations in heat release rate, caused perhaps due to flow turbulence. This results in sound waves, which propagate outside the boundary of the flame. The radiated acoustic waves are reflected from the boundaries of the combustion chamber, perturbing the fuel flow rate and hence the spray characteristics. This eventually leads to perturbation in the heat release rate and thus a feedback loop is established. At certain conditions, if the unsteady heat release rate drives the acoustic oscillations, satisfying Rayleigh criterion, pressure oscillations grow leading to discrete tonal sound and this phenomena is termed as combustion instability. Experiments are performed in a scaled down swirl stabilized liquid fueled gas turbine combustor, where a new scheme for open-loop control of combustion noise using periodic fuel injection is employed without drastically altering the combustor design or forfeiting its performance. Fuel is modulated in the frequency range of 0.6 to 5 Hz with various duty cycles [25–75%] using square wave. Fuel modulation is achieved by passing fuel through a direct current (DC) powered solenoid valve, which is being controlled using a custom-made circuit. The modulated fuel enters the combustor through an air-blast atomizer and is metered through a turbine flow meter. The main objective of this paper is to investigate the potential of active control to reduce combustion noise in laboratory scaled gas turbine combustor. Pressure transducer is used to capture the sound pressure level inside the combustor. A reduction in overall sound pressure level of 14dB is achieved by modulating fuel with 50% duty cycle at 1.5Hz.

Author(s):  
Rongxiao Dong ◽  
Qingchun Lei ◽  
Yeqing Chi ◽  
Qun Zhang ◽  
Wei Fan

Abstract Time-resolved volumetric measurements (4D measurements) were performed to study the heat release rate characteristics in a model gas turbine combustor at 10 kHz. For this purpose, a high-speed camera combined with an image intensifier and a set of customized fiber probes were employed to continuously capture the CH* chemiluminescence signals from nine different viewing angles. Based on the measurements, the computed tomography program was performed to reconstruct the shot-to-shot 3D distributions of the CH* signals. Specific focuses have been made to demonstrate the capabilities of the current tomographic technique in applications of a realistic combustor, in which the full optical access was usually not available for every viewing angle. The results showed that the 3D reconstruction can successfully retrieval the flame edge contours rather than the signal intensity. The flame surface area was then calculated based on the reconstructed flame edge contours and used to infer the heat release rate. The fluctuation of global/local flame surface area indicated that there existed distinct difference between the global instability and local instabilities at various locations in the non-symmetric combustor. The global instability appears to be an integration of those local instabilities.


Author(s):  
Xiaoling Chen ◽  
Wyatt Culler ◽  
Stephen Peluso ◽  
Domenic Santavicca ◽  
Jacqueline O’Connor

Low-emissions gas turbine combustion, achieved through the use of lean, premixed fueling strategies, is susceptible to combustion instability. The driving mechanism for this instability arises from fluctuations of pressure, fuel/air flow rate, and heat release rate. If these fluctuations are relatively in-phase, the combustion system will evolve to a self-excited state. The self-excited instability frequency and amplitude depend mainly on the operating condition and the geometry of the combustor. In this study, we consider the onset and decay of self-excited instabilities, resulting from transients in fuel/air ratio, in both single-nozzle and multi-nozzle combustors. In particular, we examine the differences in the instability onset and decay processes between these two flame configurations, as most gas turbine combustors have multiple nozzles, but most gas turbine combustor experiments utilize a single-nozzle. A nonlinear logistic regression analysis is applied to study the timescales of the decay and onset transients. Variations in the equivalence ratio change the heat release rate distribution inside the combustor, which is captured using chemiluminescence imaging. The normalized Rayleigh index, which shows the spatial distribution of the instability driving, is calculated to analyze the driving strength in different regions of the flame. Comparisons between the single- and multi-nozzle flame transients, including both center and outer flames for the multi-nozzle combustor, suggest that both confinement from the wall and flame-flame interaction are crucial to determining flame dynamics as the equivalence ratio transient changes the heat release rate distribution near corner recirculation zone and flame shear layers.


2016 ◽  
Vol 8 (4) ◽  
pp. 285-298 ◽  
Author(s):  
Aimee S Morgans ◽  
Ignacio Duran

Combustion noise comprises two components: direct combustion noise and indirect combustion noise. The latter is the lesser studied, with entropy noise believed to be its main component. Entropy noise is generated via a sequence involving diverse flow physics. It has enjoyed a resurgence of interest over recent years, because of its increasing importance to aero-engine exhaust noise and a recognition that it can affect gas turbine combustion instabilities. Entropy noise occurs when unsteady heat release rate generates temperature fluctuations (entropy waves), and these subsequently undergo acceleration. Five stages of flow physics have been identified as being important, these being (a) generation of entropy waves by unsteady heat release rate; (b) advection of entropy waves through the combustor; (c) acceleration of entropy waves through either a nozzle or blade row, to generate entropy noise; (d) passage of entropy noise through a succession of turbine blade rows to appear at the turbine exit; and (e) reflection of entropy noise back into the combustor, where it may further perturb the flame, influencing the combustor thermoacoustics. This article reviews the underlying theory, recent progress and outstanding challenges pertaining to each of these stages.


2021 ◽  
Author(s):  
Rongxiao Dong ◽  
Qingchun Lei ◽  
Yeqing Chi ◽  
Qun Zhang ◽  
Wei Fan

Author(s):  
Mitchell L. Passarelli ◽  
J. D. Maxim Cirtwill ◽  
Timothy Wabel ◽  
Adam M. Steinberg ◽  
A. J. Wickersham

Abstract This paper analyzes intermittent self-excited thermoacoustic oscillations in which the pressure (P′) and heat release rate (q̇′) fluctuations are harmonically coupled. That is to say, P′ and q̇′ do not oscillate at the same frequencies, but rather at frequencies in integer ratios. Thus, this system represents a case dominated by nonlinear cross-mode coupling. The measurements were obtained in an optically-accessible combustor equipped with an industrial gas turbine fuel injector operating with liquid fuel under partially-premixed conditions at elevated pressure. High-speed chemiluminescence (CL) imaging of OH* was used as an indicator of the heat release rate. The data was processed using spectral proper orthogonal decomposition (SPOD) to isolate the dominant heat release and pressure modes. Synchronization theory was used to determine when the modes are coupled and how their interaction manifests in the measurements, particularly how it relates to the observed intermittency. The results show three distinct intervals of synchronized oscillation shared by all the mode pairs analyzed. The first interval exhibits the same characteristics as a pair of noisy, phase-locked self-oscillators, with phase-slipping and frequency-pulling. While the behaviour of the second interval differs among mode pairs, strong frequency-pulling is observed during the third interval for all pairs.


1962 ◽  
Vol 5 (19) ◽  
pp. 505-510
Author(s):  
Takashi SATO ◽  
Itaru MICHIYOSHI ◽  
Ryuichi MATSUMOTO

Author(s):  
Alexander J. De Rosa ◽  
Janith Samarasinghe ◽  
Stephen J. Peluso ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca

Fluctuations in the heat release rate that occur during unstable combustion in lean premixed gas turbine combustors can be attributed to velocity and equivalence ratio fluctuations. For a fully premixed flame, velocity fluctuations affect the heat release rate primarily by inducing changes in the flame area. In this paper, a technique to analyze changes in flame area using chemiluminescence-based flame images is presented. The technique decomposes the flame area into separate components which characterize the relative contributions of area fluctuations in the large scale structure and the small scale wrinkling of the flame. The fluctuation in the wrinkled area of the flame which forms the flame brush is seen to dominate its response in the majority of cases tested. Analysis of the flame area associated with the large scale structure of the flame resolves convective perturbations that move along the mean flame position. Results are presented that demonstrate the application of this technique to both single-nozzle and multi-nozzle flames.


Author(s):  
Sebastian Ulmer ◽  
Franz Joos

On the topic of CO2 capture from gas turbines, exhaust gas recirculation (EGR) is a commonly discussed method to increase CO2 concentration at a gas turbine outlet to make the CO2 capture process more efficient. This paper presents the influence of the recirculation on heat release rate and emissions. The investigation is made using the commercial RANS solver ANSYS CFX coupled with an in-house code for a hybrid transported PDF/RANS simulation using detailed chemistry of GRI 3.0. Initially an investigation on reactivity was made using numerical calculation of laminar flame speed. It is found that exhaust gas recirculation has only a minor effect on reactivity in lean premixed combustion. Therefore, the operation point of the combustor can be kept constant with and without EGR. Simulations of the combustor with exhaust gas recirculation using the hybrid PDF/RANS with GRI 3.0 show a minor influence of NO and NO2 doping of the vitiated air on the flame speed and the doping delays heat release slightly. CO doping has no effect on heat release rate. CO emissions at combustor exit remain unaffected by NO, CO or NO2 doping. Seeding the vitiated air with 50ppm nitric oxides reveal that any NO2 present in the vitiated air is reduced to NO in the flame. NO2 emissions increase with NO2 doping but are still 2 magnitudes lower than NO emissions. It is found that NO is reduced by 3% due to of NO reburn. Based on literature data it is concluded that there is a deficit of the GRI 3.0 reaction mechanism. Experimental data taken from literature reveal of NO reburn by approximately 20%. Therefore emission data of nitric oxides of flames that should show a considerable reburn effect should be used with caution, while heat release and CO emissions are predicted more accurately. It is shown, that with the model created for the generic gas turbine combustor it is possible to study the effects of exhaust gas recirculation on the combustion process in detail and resolve detailed kinetic effects.


Sign in / Sign up

Export Citation Format

Share Document