Dynamic Behaviour of Delaminated Composite Plate Under Blast Loading

Author(s):  
Chetan Kumar Hirwani ◽  
Subrata Kumar Panda ◽  
Siba Sankar Mahapatra ◽  
Sanjib Kumar Mandal ◽  
Apurba Kumar De

In the present article, the dynamic behaviour of the delaminated composite plate subjected to blast loading has been investigated. For the investigation, a general finite element model using higher-order mid-plane kinematics has been developed. The model has been discretised using nine noded isoparametric Lagrangian elements having nine degrees of freedom at each node. The continuity in the laminated and delaminated section has been established using the intermittent continuity condition. The final governing equation has been solved by applying Newmark’s time integration scheme in conjunction with finite element steps. Further, the said responses have been evaluated by developing an in-house MATLAB code based on the proposed model. In order to illustrate the consistency and accuracy of the present model, convergence and comparison study has been conducted i.e. the responses are evaluated for different mesh sizes and compared them with those of responses of earlier published literature. Finally, various examples have been solved to illustrate the influence of the size and position of debonding, side to thickness ratio, aspect ratio and end condition on the dynamic response of composite structure and discussed in detail.

2012 ◽  
Vol 77 ◽  
pp. 11-28
Author(s):  
Marcelo J. Dapino ◽  
Suryarghya Chakrabarti

This work presents a unified approach to model three dimensional magnetostrictive transducers. Generalized procedures are developed for incorporating nonlinear coupled constitutive behavior of magnetostrictive materials into an electro-magneto-mechanical finite element modeling framework. The finite element model is based on weak forms of Maxwell's equations for electromagnetics and Navier's equations for mechanical systems. An implicit time integration scheme is implemented to obtain nonlinear dynamic system responses. The model is implemented into a finite element (FE) solver and applied to two case studies, a Galfenol unimorph actuator and a magnetohydraulic Terfenol-D actuator for active engine mounts. Model results are compared with experiments, and parametric analyses are conducted which provide guidelines for optimization of actuator design.


Author(s):  
Ali Bahtui ◽  
Hamid Bahai ◽  
Giulio Alfano

Recent developments on the numerical analysis of detailed finite element models of unbonded flexible risers using ABAQUS are presented. Several analytical methods are studied and combined together, and their results are compared with those obtained in the finite element model for two different tests, the second one involving cyclic loading. In the finite element model all layers are modeled separately and contact interfaces are placed between each layer. A fully explicit time-integration scheme was used on a 16-processor cluster. The very good agreement found from numerical and analytical comparisons validates the use of our numerical model to provide benchmark solutions against which further detailed investigation will be made.


Author(s):  
A. Bahtui ◽  
H. Bahai ◽  
G. Alfano

This paper presents an analytical formulation and a finite element analysis of the behavior of multilayer unbonded flexible risers. The finite element model accurately incorporates all the fine details of the riser that were previously considered to be important but too difficult to simulate due to the significant associated computational cost. All layers of the riser are separately modeled, and contact interaction between layers has been accounted for. The model includes geometric nonlinearity as well as frictional effects. The analysis considers the main modes of flexible riser loading, which include internal and external pressures, axial tension, torsion, and bending. Computations were performed by employing a fully explicit time integration scheme on a parallel 16-processor cluster of computers. Consistency of simulation results was demonstrated by comparison with those of the analytical model of an identical structure. The close agreement gives confidence in both approaches.


1981 ◽  
Vol 103 (4) ◽  
pp. 657-664 ◽  
Author(s):  
H. U. Akay ◽  
A. Ecer

Analysis of transonic flow through a cascade of airfoils is investigated using the finite element method. Development of a computational grid suitable for complex flow structures and different types of boundary conditions is presented. An efficient pseudo-time integration scheme is developed for the solution of equations. Modeling of the shock and the convergence characteristics of the developed scheme are discussed. Numerical results include a 45 deg staggered cascade of NACA 0012 airfoils with inlet flow Mach number of 0.8 and angles of attack 1, 0, and −1 deg.


Author(s):  
V. Chawla ◽  
T. A. Laursen

Abstract 1D impact between two identical bars is modeled as a simple spring-mass system as would be generated by a finite element discretization. Some commonly used time integrators are applied to the system to demonstrate defects in the numerical solution as compared to the exact analytical solution. Using energy conservation as the criterion for stability, a new time integration scheme is proposed that imposes a persistency condition for dynamic contact. Finite element simulation with Lagrange multipliers for enforcing the contact constraints shows exact energy and momentum conservation.


2004 ◽  
Vol 01 (01) ◽  
pp. 1-15 ◽  
Author(s):  
TED BELYTSCHKO ◽  
HAO CHEN

An enrichment technique for accurately modeling two dimensional crack propagation within the framework of the finite element method is presented. The technique uses an enriched basis that spans the asymptotic dynamic crack-tip solution. The enrichment functions and their spatial derivatives are able to exactly reproduce the asymptotic displacement field and strain field for a moving crack. The stress intensity factors for Mode I and Mode II are taken as additional degrees of freedom. An explicit time integration scheme is used to solve the resulting discrete equations. Numerical simulations of linear elastodynamic problems are reported to demonstrate the accuracy and potential of the technique.


Author(s):  
Genady Shagal ◽  
Shaker A. Meguid

Abstract The coupled dynamic response of two cooperating robots handling two flexible payloads for the purpose of fixtureless assembly and manufacturing is treated using a new algorithm. In this algorithm, the equations describing the dynamics of the system are obtained using Lagrange’s method for the rigid robot links and the finite element method for the flexible payloads. A new time integration scheme is developed to treat the coupled equations of motion of the rigid links for a given displacement of the flexible payloads. The finite element equations of the flexible payloads are then treated using an implicit approach. The new algorithm was verified using simplified examples and was later used to examine the dynamic response of two cooperating robot arms manipulating flexible payloads which are typical of the automotive industry.


Author(s):  
A. Bahtui ◽  
H. Bahai ◽  
G. Alfano

This paper presents a detailed finite element analysis of a five-layer unbonded flexible riser. The numerical results are compared analytical solutions for various load cases. In the finite element model all layers are modelled separately with contact interfaces placed between each layer. The finite element model includes the main features of the riser geometry with very little simplifying assumptions made. The numerical model was solved using a fully explicit time-integration scheme implemented in a parallel environment on a 16-processor cluster. The very good agreement found from numerical and analytical comparisons validates the use of our numerical model to provide benchmark solutions against which further detailed investigation will be made.


Author(s):  
Jeanne Joachim ◽  
Florence Nyssen ◽  
Alain Batailly

Abstract This contribution focuses on the combined analysis of mistuning and unilateral blade-tip/casing contacts. A 2D phenomenological finite element model of an aircraft engine fan stage is considered. It is reduced by means of the Craig-Bampton component mode synthesis method and contact treatment relies on a Lagrange multiplier algorithm within an explicit time-integration scheme. Blade-tip/casing contacts are initiated through the deformed shape of a perfectly rigid casing. Mistuning is accounted for on the blades only. Monte Carlo simulations are carried out in both linear and nonlinear configurations, which allows to compare amplifications predicted in both context due to mistuning. Following a thorough convergence analysis of the proposed numerical strategy, the influence of mistuning level as well as the configuration of the external forcing are investigated. Presented results underline the detrimental consequences of mistuning in a nonlinear structural context, yielding even higher vibration amplifications than in a linear context. A cross-analysis between linear and nonlinear computations reveals that no correlation is found between linear and nonlinear amplifications which suggests that the effect of existing strategies to mitigate vibration amplifications within a linear context may not be suitable within a nonlinear context.


Sign in / Sign up

Export Citation Format

Share Document