Modeling of 3D Magnetostrictive Systems with Application to Galfenol and Terfenol-D Actuators
This work presents a unified approach to model three dimensional magnetostrictive transducers. Generalized procedures are developed for incorporating nonlinear coupled constitutive behavior of magnetostrictive materials into an electro-magneto-mechanical finite element modeling framework. The finite element model is based on weak forms of Maxwell's equations for electromagnetics and Navier's equations for mechanical systems. An implicit time integration scheme is implemented to obtain nonlinear dynamic system responses. The model is implemented into a finite element (FE) solver and applied to two case studies, a Galfenol unimorph actuator and a magnetohydraulic Terfenol-D actuator for active engine mounts. Model results are compared with experiments, and parametric analyses are conducted which provide guidelines for optimization of actuator design.