Numerical Study of Lateral Merger of Vapor Bubbles During Nucleate Pool Boiling

Author(s):  
Abhijit Mukherjee ◽  
Vijay K. Dhir

Nucleate boiling is one of the most efficient modes of heat transfer. At the start of nucleate boiling, isolated bubbles appear on the heating surface, the regime known as partial nucleate boiling. Transition from isolated bubbles to fully developed nucleate boiling occurs with increase in wall superheat, when bubbles begin to merge in vertical and lateral directions. The laterally merged bubbles form vapor mushrooms, which stay attached to the heater surface via numerous vapor stems. The present study is performed to numerically analyze the bubble dynamics and heat transfer associated with lateral bubble merger during transition from partial to fully developed nucleate boiling. The complete Navier-Stokes equations in three dimensions along with the continuity and energy equations are solved using the SIMPLE method. The liquid vapor interface is captured using the Level-Set technique. Calculations are carried out for multiple bubble-merger in a line and also in a plane and the bubble dynamics and wall heat transfer are compared to that for a single bubble. The results show that the merger process significantly increases the overall wall heat transfer. It is also found that the orientation of the bubbles strongly influences different heat transfer mechanisms.

2004 ◽  
Vol 126 (6) ◽  
pp. 1023-1039 ◽  
Author(s):  
A. Mukherjee ◽  
V. K. Dhir

In the present work the bubble dynamics and heat transfer associated with lateral bubble merger during transition from partial to fully developed nucleate boiling is studied numerically. Complete Navier–Stokes equation in three dimensions along with the continuity and energy equations are solved using the SIMPLE method. The liquid vapor interface is captured using the Level-Set technique. Calculations are carried out for multiple bubble mergers in a line and also in a plane and the bubble dynamics and wall heat transfer are compared to that for a single bubble. The results show that merger of multiple bubbles significantly increases the overall wall heat transfer. This enhanced wall heat transfer is caused by trapping of liquid layer between the bubble bases during merger and by drawing of cooler liquid towards the wall during contraction after merger. Good agreement with data from experiments is found in bubble growth rate and bubble shapes obtained from numerical simulations.


Volume 3 ◽  
2004 ◽  
Author(s):  
Abhijit Mukherjee ◽  
Satish G. Kandlikar

The present study is performed to numerically analyze an evaporating meniscus on a moving heated surface. This phenomenon is similar to the one observed at the base of a vapor bubble during nucleate boiling. The complete Navier-Stokes equations along with continuity and energy equations are solved. The liquid vapor interface is captured using the level set technique. A column of liquid is placed between two parallel plates with an inlet for water at the top to feed the meniscus. The location of water inlet at the top is kept fixed and the bottom wall is imparted with a velocity. Calculations are done in two-dimensions with a fixed distance between the plates. The main objective is to study the velocity and temperature fields inside the meniscus and calculate the wall heat transfer. The results show that the wall velocity creates a circulation near the meniscus base causing increased wall heat transfer as compared to a stationary meniscus. The local wall heat transfer is found to vary significantly along the meniscus base, the highest being near the advancing contact line.


2009 ◽  
Vol 283-286 ◽  
pp. 329-334
Author(s):  
Muhammad Sajid ◽  
Rachid Bennacer

Nucleate boiling is an efficient mechanism of heat transfer. The rate of bubble growth and the subsequent bubble motion has a tremendous influence on heat transfer. The study of bubble dynamics is a coupled problem. The rate of evaporation controls the interface speed. One approach to study bubble dynamics is to decouple the problem from energy conservation equation and use an input value of rate of evaporation. The objective is to observe how irregular evaporation rate controls bubble dynamics and the shape of bubble and to study the local over-pressure. The level set method is used to track the liquid-vapor interface. The model consists of the Navier-Stokes equations which govern the momentum and mass balances and the level set equation which governs the interface motion due to phase change. The dynamics of a single bubble under different rates of evaporation and varying levels of gravity have been studied. The results of the numerical simulation show that this model adequately describes bubble dynamics in nucleate boiling, including conditions of microgravity.


Author(s):  
Abhijit Mukherjee ◽  
Satish G. Kandlikar

Microchannel heat sinks typically consist of parallel channels connected through a common header. During flow boiling random temporal and spatial formation of vapor bubbles may lead to reversed flow in certain channels which causing an early CHF condition. Inside the microchannels the liquid surface tension forces is expected to play an important role and impact the vapor bubble growth and corresponding wall heat transfer. In the present study growth of a vapor bubble inside a microchannel during flow boiling is numerically studied by varying the surface tension but keeping the value of contact angle constant. The complete Navier-Stokes equations along with continuity and energy equations are solved using the SIMPLER method. The liquid-vapor interface is captured using the level set technique. The fluid properties used are of water but the surface tension value is varied systematically. The effect of surface tension on bubble growth rate and wall heat transfer is quantified. The results indicate that for the range of parameters investigated surface tension has little influence on bubble growth and wall heat transfer.


Author(s):  
Woorim Lee ◽  
Gihun Son

Bubble growth on a micro-finned surface, which can be used in enhancing boiling heat transfer, is numerically investigated by solving the conservation equations of mass, momentum, and energy. The bubble deformation or the liquid-vapor interface is determined by the sharp-interface level-set method, which is modified to include the effect of phase change and to treat the contact angle and the evaporative heat flux from the liquid microlayer on an immersed solid surface of a microfin. The numerical method is applied to clarify bubble growth and heat transfer characteristics on a surface including fin and cavity during nucleate boiling which have not been provided from the previous experimental studies. The effects of single fin, fin-cavity distance, and fin-fin spacing on the bubble dynamics are investigated. The micro-fin is found to affect the activation of cavity. The fin-cavity configuration is found to determine the bubble formation in a cavity. The vapor removal rate is also observed to significantly depend on the fin-fin spacing.


Author(s):  
Abhijit Mukherjee ◽  
Satish G. Kandlikar

The present study is performed to analyze the wall heat transfer mechanisms during growth of a vapor bubble inside a microchannel. The microchannel is of 200 μm square cross section and a vapor bubble begins to grow at one of the walls, with liquid coming in through the channel inlet. The complete Navier-Stokes equations along with continuity and energy equations are solved using the SIMPLER method. The liquid vapor interface is captured using the level set technique. The bubble grows rapidly due to heat transfer from the walls and soon turns into a plug filling the entire channel cross section. The average wall heat transfer at the channel walls is studied for different values of wall superheat and incoming liquid mass flux. The results show that the wall heat transfer increases with wall superheat but is almost unaffected by the liquid flow rate. The bubble growth is found to be the primary mechanism of increasing wall heat transfer as it pushes the liquid against the walls thereby influencing the thermal boundary layer development.


2005 ◽  
Author(s):  
A. Mukherjee ◽  
S. G. Kandlikar

Numerical simulation is carried out to study a 2D evaporating meniscus formed on a moving wall. The complete Navier-Stokes equations along with continuity and energy equations are solved. The liquid vapor interface is captured using the level set technique. The meniscus is fed with saturated water from the top whereas the bottom wall is maintained at a higher temperature and is also imparted with a velocity. The meniscus attains a steady shape when all the incoming liquid gets evaporated due to heat transfer from the wall. The advancing and receding contact region of the meniscus are provided with different contact angles. Results indicate that the average heat flux at the meniscus base increases with increase in contact angle. The primary reason for heat transfer from the wall is attributed to the liquid circulation inside the meniscus and the corresponding transient conduction from the wall. As the meniscus contact angle increases the liquid circulation is found to disturb the thermal boundary layer more effectively thereby resulting in increased wall heat transfer. The effect of contact angle on wall heat transfer to the moving and evaporating meniscus is compared to partial nucleate pool boiling.


2012 ◽  
Vol 4 (1) ◽  
pp. 65-83 ◽  
Author(s):  
S. Senthil Kumar ◽  
Y. M. C. Delauré

A Volume of Fluid (VOF) – Youngs' model for the solution of an incompressible immiscible two-phase flows is presented. The solver computes the flow field by solving the family of Navier Stokes equations on a fixed (Eulerian) Staggered Cartesian grid using the Finite Volume formulation of Semi-Implicit Pressure Linked Equation (SIMPLE) method and tracks the position of interface between two fluids with different fluid properties by Piecewise Linear Interface Construction (PLIC) Method. The suitability of the SIMPLE type implementation is assessed by investigating the dynamics of free rising bubbles for different fluid properties and flow parameters. The results obtained with the present numerical method for rising bubbles in viscous liquids are compared with reported numerical and experimental results.


1977 ◽  
Vol 83 (1) ◽  
pp. 1-31 ◽  
Author(s):  
G. D. Mallinson ◽  
G. De Vahl Davis

The solution of the steady-state Navier–Stokes equations in three dimensions has been obtained by a numerical method for the problem of natural convection in a rectangular cavity as a result of differential side heating. In the past, this problem has generally been treated as though it were two-dimensional. The solutions explore the three-dimensional motion generated by the presence of no-slip adiabatic end walls. For Ra = 104, the three-dimensional motion is shown to be the result of the inertial interaction of the rotating flow with the stationary walls together with a contribution arising from buoyancy forces generated by longitudinal temperature gradients. The inertial effect is inversely dependent on the Prandtl number, whereas the thermal effect is nearly constant. For higher values of Ra, multiple longitudinal flows develop which are a delicate function of Ra, Pr and the cavity aspect ratios.


Sign in / Sign up

Export Citation Format

Share Document