Open-Air Synthesis of Carbon Nanotubes by Laser-Induced Chemical Vapor Deposition

2005 ◽  
Author(s):  
Kinghong Kwok ◽  
Wilson K. S. Chiu

Carbon nanotubes have unique mechanical, electronic and thermal properties with applications ranging from reinforced composite materials to micro-scale electronic devices, and are considered one of the next generation advanced engineering materials. In this study, a laser-induced chemical vapor deposition (LCVD) process has been developed that is capable of depositing carbon nanotubes in open-air from a gas mixture consisting of propane and hydrogen. A CO2 laser is used to irradiate the substrate covered with metal nanoparticles, subsequently resulting in the growth of multi-wall carbon nanotubes. The effect of laser power and reactant gas flow configuration on carbon nanotube growth kinetics is experimentally investigated. Results indicate that carbon nanotube synthesis is highly dependent on the laser-induced temperature distribution and the carbon radical concentration. Transmission electron microscopy, scanning electron microscopy and Raman spectroscopy are used to relate the composition, microstructure and growth kinetics to the process conditions of carbon nanotubes deposited in this study.

1999 ◽  
Vol 593 ◽  
Author(s):  
H. Cui ◽  
D. Palmer ◽  
O. Zhou ◽  
B. R. Stoner

ABSTRACTAligned multi-wall carbon nanotubes have been grown on silicon substrates by microwave plasma enhanced chemical vapor deposition using methane/ammonia mixtures. The concentration ratio of methane/ammonia in addition to substrate temperature was varied. The morphology, structure and alignment of carbon nanotubes were studied by scanning electron microscopy and transmission electron microscopy. Both concentric hollow and bamboo-type multi-wall carbon nanotubes were observed. Growth rate, size distribution, alignment, morphology, and structure of carbon nanotubes changed with methane/ammonia ratio and growth temperature. Preliminary results on field emission properties are also presented.


2017 ◽  
Vol 26 (03) ◽  
pp. 1740010
Author(s):  
K. Woods ◽  
J. Silliman ◽  
T. C. Schwendemann

A block copolymer/metal-salt solution was used to deposit metal nanoparticles on substrates, from which carbon nanotubes (CNTs) were grown in a chemical vapor deposition (CVD) chamber. Mono and hybrid catalysts of Fe, Ni, and Co-nitrates were tested, and separately Co, Ni, and Cu-chlorides. In both cases cobalt/cobalt-hybrids produced the highest density of multi-wall carbon nanotubes (MWCNTs). Slight vertical growth, though sparse, was observed after growth at 800°C from a nickel catalyst on single-crystal aluminium oxide (~130nm diameter).


NANO ◽  
2012 ◽  
Vol 07 (06) ◽  
pp. 1250045 ◽  
Author(s):  
YUN SUN ◽  
RYO KITAURA ◽  
TAKUYA NAKAYAMA ◽  
YASUMITSU MIYATA ◽  
HISANORI SHINOHARA

The influences of synthesis parameters on the mean diameter and diameter distribution of as-grown single-wall carbon nanotubes (SWCNTs) with chemical vapor deposition (CVD) using the mist flow method have been investigated in detail with Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We found that CVD reaction temperature and flow rate play an essential role in controlling the mean diameter and the quality of as-grown SWCNTs. Furthermore, we found that the carbon supply kinetics can be a dominant factor to determine the diameter of as-grown SWCNTs in the present mist flow method. Under a different combination of various parameters, the mean diameter of SWCNTs can be varied from 0.9 nm to 1.5 nm controllably.


2008 ◽  
Vol 14 (S2) ◽  
pp. 304-305
Author(s):  
M Ellis ◽  
T Jutarosaga ◽  
S Smith ◽  
Y Wei ◽  
S Seraphin

Extended abstract of a paper presented at Microscopy and Microanalysis 2008 in Albuquerque, New Mexico, USA, August 3 – August 7, 2008


2007 ◽  
Vol 85 (10) ◽  
pp. 645-650 ◽  
Author(s):  
Maoqi Feng ◽  
Richard J Puddephatt

Chemical vapor deposition (CVD) of Ni, Pd, and Pt films and of Ni/Pd and Pd/Pt bimetallic films on multiwall carbon nanotubes (MWCNTs) can be effected at low temperature if the nanotubes are pretreated by CVD of titanium carbide. In the absence of the pretreatment, the CVD leads to formation of isolated nanoparticles of the nickel-group metals. The metallized MWCNTs are curved or kinked, as a result of the interaction with the metal. Preliminary oxidation of the carbon nanotubes allows easier metallization, and the bending of the metallated nanotubes is not observed in this case.Key words: Chemical vapor deposition, platinum, palladium, nickel, carbon, nanotube.


Author(s):  
Kinghong Kwok ◽  
Wilson K. S. Chiu

An open-air laser-induced chemical vapor deposition technique has been successfully used to rapidly deposit pillars of carbon nanotube forest on a moving glass substrate. A CO2 laser is used to heat a traversing fused quartz rod covered with metal particles inside a hydrocarbon environment. Pyrolysis of hydrocarbon precursor gas occurs and subsequently gives rise to the growth of multi-wall carbon nanotubes on the substrate surface. The experimental results indicate that nanotube growth kinetics and microstructure are strongly dependent on the experimental parameters such as laser power. The typical deposition rate of carbon nanotubes achieved in this study is over 50 μm/s, which is relatively high compared to existing synthesis techniques. At high power laser irradiation, carbon fibers and carbon film are formed as a result of excessive formation of amorphous carbon on the substrate. High-resolution transmission and scanning electron microscopy, and x-ray energy-dispersive spectrometry are used to investigate the deposition rate, microstructure and chemical composition of the catalytic surface and the deposited carbon nanotubes.


1988 ◽  
Vol 3 (6) ◽  
pp. 1397-1403 ◽  
Author(s):  
Duane E. Meyer ◽  
Natale J. Ianno ◽  
John A. Woollam ◽  
A. B. Swartzlander ◽  
A. J. Nelson

A system has been designed and constructed to produce diamond particles by inductively coupled radio-frequency, plasma-assisted chemical vapor deposition. This is a low-pressure, low-temperature process used in an attempt to deposit diamond on substrates of glass, quartz, silicon, nickel, and boron nitride. Several deposition parameters have been varied including substrate temperature, gas concentration, gas pressure, total gas flow rate, rf input power, and deposition time. Analytical methods employed to determine composition and structure of the deposits include scanning electron microscopy, absorption spectroscopy, scanning Auger microprobe spectroscopy, and Raman spectroscopy. Analysis indicates that particles having a thin graphite surface, as well as diamond particles with no surface coatings, have been deposited. Deposits on quartz have exhibited optical bandgaps as high as 4 5 eV. Scanning electron microscopy analysis shows that particles are deposited on a pedestal which Auger spectroscopy indicates to be graphite. This is a phenomenon that has not been previously reported in the literature.


2011 ◽  
Vol 264-265 ◽  
pp. 837-842
Author(s):  
Jin Cheng ◽  
Xiao Ping Zou

In this study, we report the synthesis of carbon nanotubes by floating catalytic chemical vapor deposition, which employs ferrocene as the catalyst precursors and ethanol as carbon source. We obtained massive deposits. The deposits were characterized by scanning electron microscopy, transmission electron microscopy, and visual laser Raman spectroscopy. We discussed the effects of synthesis temperature on the synthesis of carbon nanotubes by floating catalytic chemical vapor deposition. Our results indicated that the synthesis temperature could affect not only on the graphitization degree, but also on the aligned growth of carbon nanotubes and the diameter of carbon nanotubes.


Sign in / Sign up

Export Citation Format

Share Document