Characteristics of Heat Transfer for Hydrogen and Wall During Filling Hydrogen Into Actual Tank at High Pressure

Author(s):  
Peter L. Woodfield ◽  
Toshio Takano ◽  
Masanori Monde

An experiment has been made to measure the rise in temperature of hydrogen and tank wall during filling of actual tanks to 35 and 70 MPa. Three different tank configurations are used, having volumes of 205, 130 and 39 liters. The filling time is 5 to 20 minutes. A governing equation for the filling process is proposed, which includes unknown values for heat transfer coefficients between the hydrogen and the wall and the wall and surrounding air. The values are tentatively assumed to be 500 W/(m2K) during filling and 250 W/(m2K) after filling for the inside tank wall and 4.5 W/(m2K) for the outside tank wall. The measured temperatures of the hydrogen gas and the wall are in good agreement with the calculated ones.

2005 ◽  
Vol 128 (6) ◽  
pp. 557-563 ◽  
Author(s):  
Paul L. Sears ◽  
Libing Yang

Heat transfer coefficients were measured for a solution of surfactant drag-reducing additive in the entrance region of a uniformly heated horizontal cylindrical pipe with Reynolds numbers from 25,000 to 140,000 and temperatures from 30to70°C. In the absence of circumferential buoyancy effects, the measured Nusselt numbers were found to be in good agreement with theoretical results for laminar flow. Buoyancy effects, manifested as substantially higher Nusselt numbers, were seen in experiments carried out at high heat flux.


Author(s):  
Ibrahim Eryilmaz ◽  
Sinan Inanli ◽  
Baris Gumusel ◽  
Suha Toprak ◽  
Cengiz Camci

This paper presents the preliminary results of using artificial neural networks in the prediction of gas side convective heat transfer coefficients on a high pressure turbine blade. The artificial neural network approach which has three hidden layers was developed and trained by nine inputs and it generates one output. Input and output data were taken from an experimental research program performed at the von Karman Institute for Fluid Dynamics by Camci and Arts [5,6] and Camci [7]. Inlet total pressure, inlet total temperature, inlet turbulence intensity, inlet and exit Mach numbers, blade wall temperature, incidence angle, specific location of measurement and suction/pressure side specification of the blade were used as input parameters and calculated heat transfer coefficient around a rotor blade used as output. After the network is trained with experimental data, heat transfer coefficients are interpolated for similar experimental conditions and compared with both experimental measurements and CFD solutions. CFD analysis was carried out to validate the algorithm and to determine heat transfer coefficients for a closely related test case. Good agreement was obtained between CFD results and neural network predictions.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Gerrit A. Schatte ◽  
Andreas Kohlhepp ◽  
Tobias Gschnaidtner ◽  
Christoph Wieland ◽  
Hartmut Spliethoff

Heat transfer to supercritical water in heated tubes and channels is relevant for steam generators in conventional power plants and future concepts for supercritical nuclear and solar-thermal power plants. A new experimental facility, the high pressure evaporation rig, setup at the Institute for Energy Systems (Technische Universität München) aims to provide heat transfer data to fill the existing knowledge gaps at these conditions. The test rig consists of a closed-loop high pressure cycle, in which de-ionized water is fed to an instrumented test section heated by the application of direct electrical current. It is designed to withstand a maximum pressure of 380 bar at 580 °C in the test section. The maximum power rating of the system is 1 MW. The test section is a vertical tube (material: AISI A213/P91) with a 7000 mm heated length, a 15.7 mm internal diameter, and a wall thickness of 5.6 mm. It is equipped with 70 thermocouples distributed evenly along its length. It enables the determination of heat transfer coefficients in the supercritical region at various steady-state or transient conditions. In a first series of tests, experiments are conducted to investigate normal and deteriorated heat transfer (DHT) under vertical upward flow conditions. The newly generated data and literature data are used to evaluate different correlations available for modeling heat transfer coefficients at supercritical pressures.


1982 ◽  
Vol 104 (3) ◽  
pp. 508-514 ◽  
Author(s):  
A. Mertol ◽  
R. Greif ◽  
Y. Zvirin

A study has been made of the heat transfer and fluid flow in a natural convection loop. Previous studies of these systems have utilized a one-dimensional approach which requires a priori specifications of the friction and the heat-transfer coefficients. The present work carries out a two-dimensional analysis for the first time. The results yield the friction and the heat-transfer coefficients and give their variation along the loop with the Graetz number as a parameter. Comparison is also made with experimental data for the heat flux and good agreement is obtained.


1982 ◽  
Vol 104 (3) ◽  
pp. 527-532 ◽  
Author(s):  
S. M. Bajorek ◽  
J. R. Lloyd

Natural convection heat transfer within a two-dimensional, partitioned enclosure of aspect ratio 1 was investigated experimentally using a Mach-Zehnder interferometer. The vertical walls were maintained isothermal at different temperatures, while the horizontal walls and the partitions were insulated. Local and average heat-transfer coefficients were determined for the air and carbon dioxide filled enclosures both with and without partitions for Grashof numbers between 1.7×105 and 3.0×106. Good agreement was found between the results in the present study for the nonpartitioned enclosure and those previously published. The partitions were found to significantly influence the convective heat transfer. Observations of the interferometric fringes indicated that the core region is unsteady, with the unsteadiness occasionally affecting the flow along the vertical isothermal walls, beginning at Grashof numbers as low as 5×105.


Author(s):  
Hidemasa Yamano ◽  
Yoshiharu Tobita

This paper describes experimental analyses using the SIMMER-III computer code, which were precedently carried out to give boundary conditions for the integral verification of the new COMPASS code, which is based on MPS method. Two topics of key phenomena in core disruptive accidents were presented in this paper: molten fuel freezing and dispersion; and boiling behavior of molten fuel pool. Related experimental database are reviewed to select appropriate experiments. To analyze the fuel freezing behavior, the GEYSER out-of-pile and the CABRI-EFM1 in-pile experiments were selected. The SIMMER-III calculations were in good agreement with fuel penetration lengths measured in a series of the GEYSER experiments. The fuel freezing behavior in the CABRI-EFM1 experiment was also reasonably simulated by SIMMER-III. The boiling pool consisting principally of molten fuel/steel mixtures is characterized by the heat transfer between fuel and steel. The CABRI-TPA2 experiment has suggested low transient heat flux from fuel to steel due to a steel vapor blanketing around a steel droplet. SIMMER-III well simulated the steel boiling behavior observed in the CABRI-TPA2 experiment by applying reduced heat transfer coefficients between fuel and steel. These experimental analyses by SIMMER-III have also identified key processes to be clarified by mesoscopic simulations using the COMPASS code.


Author(s):  
Aleksey Bal'chugov ◽  
Mihail Vazhenin ◽  
Borislav Kustov

Tests of a laboratory setup for the study of new methods of heat transfer enhancement were performed. The experimentally determined heat transfer coefficients are in good agreement with those calculated by known equations, which indicates the reliability of the research methods used.


Sign in / Sign up

Export Citation Format

Share Document