Transient Heat Transfer From Single Horizontal Heaters in Forced Flow of Helium Gas at Exponentially Increasing Heat Inputs

Author(s):  
Qiusheng Liu ◽  
Katsuya Fukuda ◽  
Makoto Shibahara

Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder and a plate (ribbon) was experimentally and theoretically studied. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The dependence of transient heat transfer on the gas flowing velocity becomes weaker when the period becomes very shorter. However, the gas temperature in this study shows little influence on the heat transfer coefficient. Empirical correlations for quasi-steady-state heat transfer and transient heat transfer were obtained based on the experimental data. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. The values of numerical solution for surface temperature and heat flux were compared and discussed with authors’ experimental data. It was clarified that the surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. The temperature distribution near the heater becomes larger as the surface temperature increases. The values of numerical solution for surface temperature and heat flux agree well with the experimental data for the cylinder diameter of 1 mm. However, the heat fluxes show some differences from the experimental values for the cylinder diameters of 0.7 mm and 2.0 mm. And for the numerical solution for a plate, the values of numerical solutions for surface temperature and heat flux at the velocity of 6 m/s agree well with the experimental data, though they show some differences at other velocities.

Author(s):  
Qiusheng Liu ◽  
Katsuya Fukuda ◽  
Makoto Shibahara ◽  
Shingo Kikumoto

Forced convection transient heat transfer for helium gas at various periods of exponentially increase of heat input to a horizontal plate (ribbon) was experimentally and theoretically studied. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over a horizontal plate under wide experimental conditions. The gas flow velocities ranged from 4 to 10 m/s, the gas temperatures ranged from 313 to 353 K, and the periods of heat generation rate, τ, ranged from 46 ms to 17 s. The pressures were from 400 to 800 kPa. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period longer than about 1 s, and it becomes higher for the period shorter than around 1 s. Empirical correlations for quasi-steady-state heat transfer and transient heat transfer were obtained based on the experimental data. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. It was obtained that the surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. The values of numerical solutions for surface temperature and heat flux at the velocity of 6 m/s agree well with the experimental data, though they show some differences at other velocities.


Author(s):  
Zhou Zhao ◽  
Qiusheng Liu ◽  
Katsuya Fukuda

This study is aimed to clarify transient heat transfer process between the surface of solid and the neighboring helium gas in Very High Temperature Reactor (VHTR) or intermediate heat exchanger (IHX). In this paper a series of platinum heaters with different widths under different pressures inside a circular channel have been tested for forced convection flow. The heat generation rate of the platinum heater was increased with a function of Q0exp(t/τ) (where t is time and τ is period of heat generation rate or e-fold time). The heaters were platinum plates with a thickness of 0.1 mm and widths of 2 mm, 4 mm and 6 mm. In the present study, the heat flux, surface temperature, and transient heat transfer coefficients were measured for helium gas passing by horizontal plates under wide experimental conditions such as velocities, pressures and periods of heat generation rate. It was clarified that the heat transfer coefficient approaches the quasi-steady-state when the period is more than around 1 s and it becomes higher when the period shorter than around 1 s. Based on the experimental data, empirical correlations for both quasi-steady-state heat transfer and transient state one at various plate-widths were obtained. It was also found that the heat transfer coefficient becomes higher with the increases of gas pressure.


Author(s):  
X. C. Li ◽  
J. Zhou ◽  
K. Aung

One of the most fundamental concepts in heat transfer is the convective heat transfer coefficient, which is closely related with the flow Reynolds number, flow geometry and the thermal conditions on the heat transfer surface. To define the heat transfer coefficient, a reference temperature is needed besides the surface temperature and heat flux. The reference temperature can be chosen differently, such as the fluid bulk mean temperature (for internal flows) and the temperature at the far field (for external flows). For complicated flows, the adiabatic wall temperature, defined as the wall temperature when the surface heat flux is zero, is commonly adopted as the reference temperature. Other options can also be applied to complicated flows. This paper analyzed some of the potential selections of the reference temperature for different flow settings, including film cooling, jet impingement with cross flows and a mixing flow in a straight duct with or without internal heat source. Both laminar and turbulent flows are considered with different boundary conditions. Dramatic changes of heat transfer coefficient are observed with different reference temperatures. In some special conditions the heat transfer coefficient becomes negative, which means the heat flux has a different direction with the driving temperature difference defined. An innovative method is proposed to calculate the heat transfer coefficient of complicated flows with constant surface temperature.


2000 ◽  
Vol 123 (2) ◽  
pp. 355-367 ◽  
Author(s):  
J. E. Bryan ◽  
J. Seyed-Yagoobi

The influence of quality, flow regime, heat flux, and mass flux on the electrohydrodynamic (EHD) enhancement of convective boiling of R-134a in a horizontal smooth tube was investigated in detail. The EHD forces generated significant enhancements in the heat transfer coefficient, but the enhancements were highly dependent on the quality, flow regime, heat flux, and mass flux. The experimental data provided evidence that an optimum EHD enhancement exists for a given set of these variables with a specific electrode design. However, experimental data also provided evidence that the EHD forces can drastically reduce the rate of heat transfer at certain conditions


Author(s):  
Ronald Akbar ◽  
Jong Taek Oh ◽  
Agus Sunjarianto Pamitran

Various experiments have been conducted on the heat transfer coefficient of two-phase flow boiling in mini channel tubes. In addition to obtaining data on the heat transfer coefficients through experiments, many researchers have also compared their experimental data using existing correlations. This research aims to determine the characteristics of the heat transfer coefficient of refrigerant R290 from the data used by processing and knowing the best heat transfer coefficient correlation in predicting the experimental data so that the results are expected to be a reference for designing a heat exchanger or for further research. The experimental data predicted is the two-phase flow boiling in a horizontal tube 3 mm diameter, with the mass flux of 50-180 kg/m2s, heat flux of 5-20 kW/m2, saturation temperature of 0-11 °C, and vapor quality of 0-1. The correlation used in this research is based on the asymptotic flow model, where the model is a combination of the nucleate and convective flow boiling mechanisms. The results show an effect of mass flux and heat flux on the experimental heat transfer coefficient and the predicted R290 heat transfer coefficient with asymptotic correlations had a good and similar result to the experimental data.


Author(s):  
Qiusheng Liu ◽  
Makoto Shibahara ◽  
Katsuya Fukuda

Transient heat transfer coefficients for helium gas flowing over a horizontal plate (ribbon) were measured under wide experimental conditions. The platinum plate with a thickness of 0.1 mm was used as test heater and heated by electric current. The heat generation rate was exponentially increased with a function of Q0exp(t/τ). The gas flow velocities ranged from 4 to 10 m/s, the gas temperatures ranged from 313 to 353 K, and the periods of heat generation rate, τ, ranged from 50 ms to 17 s. The surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The dependence of transient heat transfer on the gas flowing velocity becomes weaker when the period becomes very shorter. The gas temperature in this study shows little influence on the heat transfer coefficient. Empirical correlation for quasi-steady-state heat transfer was obtained based on the experimental data.


Author(s):  
Qiusheng Liu ◽  
Makoto Shibahara ◽  
Katsuya Fukuda

In this research, to obtain fundamental experimental data of transient heat transfer and to clarify the transient heat transfer process at wide experimental conditions for the safety assessment of very high temperature reactor (VHTR), forced convection transient heat transfer coefficients were measured for Helium, Carbon dioxide, Argon and Nitrogen gases flowing over a horizontal plate due to exponentially increasing heat input. The platinum ribbon with a thickness of 0.1 mm and a width of 4.0 mm was used as the test heater and heated by electric current. The heat generation rate was controlled and measured by a heat input control system, it was exponentially increased with a function of Q0exp(t/τ). The periods (e-fold times) of heat generation rate, τ, ranged from 46 ms to 17 s, the gas flow velocities ranged from 1 to 10 m/s, the pressures ranged from 400 kPa to 800 kPa, and the gas temperatures ranged from 290 to 353 K. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The heat transfer coefficient increases with the increases in pressure and velocity, and it shows some dependence on temperature at the experimental range of this research. The dependence of transient heat transfer on the gas flow velocity becomes weaker when the period becomes very shorter. Effect of gas thermal physical properties on heat transfer was investigated, and helium gas shows higher heat transfer coefficients than those of other gases due to its higher thermal conductivity. Empirical correlations for quasi-steady-state heat transfer and transient one for various gases were obtained based on the experimental data.


Author(s):  
Makoto Shibahara ◽  
Qiusheng Liu ◽  
Katsuya Fukuda

Steady and transient forced convection transient heat transfer due to exponentially increasing heat input to a heater is important as a database for safety assessment of the transient heat transfer process not only in a high temperature gas cooled reactor (HTGR) due to an accident in excess reactivity but also in high heat flux gas cooling devices such as a gas turbine and a rocket engine. In this research, forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input (Q0exp(t/τ)) to a horizontal narrow plate was numerically solved based on a turbulent flow model. The platinum plate with a length of 50 mm was used as test heater. The velocities ranged from 4 to 10 m/s, the gas temperatures ranged from 313 to 353 K, and the periods of heat generation rate, τ, ranged from 46 ms to 8.6 s. The values of numerical solutions for surface temperature and heat flux were compared and discussed with authors’ experimental values. It was obtained that the surface temperature difference and heat flux increase exponentially as the heat generation rate increases with the exponential function. Then the temperature within the boundary layer also increases with the increase of the surface temperature. It is understood that the gradient of the temperature distribution near the wall of the plate is higher at a higher surface temperature difference. The values of numerical solutions for surface temperature and heat flux at the velocity of 6 m/s agree well with the experimental data, though they show some differences at other velocities. And also, heat transfer coefficients at the velocity of 6 m/s agree well with the experimental data, though they show some differences at other velocities. They agree within 15% at various periods and velocities.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 180
Author(s):  
Asif Ali ◽  
Lorenzo Cocchi ◽  
Alessio Picchi ◽  
Bruno Facchini

The scope of this work was to develop a technique based on the regression method and apply it on a real cooled geometry for measuring its internal heat transfer distribution. The proposed methodology is based upon an already available literature approach. For implementation of the methodology, the geometry is initially heated to a known steady temperature, followed by thermal transient, induced by injection of ambient air to its internal cooling system. During the thermal transient, external surface temperature of the geometry is recorded with the help of infrared camera. Then, a numerical procedure based upon a series of transient finite element analyses of the geometry is applied by using the obtained experimental data. The total test duration is divided into time steps, during which the heat flux on the internal surface is iteratively updated to target the measured external surface temperature. The final procured heat flux and internal surface temperature data of each time step is used to find the convective heat transfer coefficient via linear regression. This methodology is successfully implemented on three geometries: a circular duct, a blade with U-bend internal channel, and a cooled high pressure vane of real engine, with the help of a test rig developed at the University of Florence, Italy. The results are compared with the ones retrieved with similar approach available in the open literature, and the pros and cons of both methodologies are discussed in detail for each geometry.


Author(s):  
Junnosuke Okajima ◽  
Atsuki Komiya ◽  
Shigenao Maruyama

The objective of this work is to experimentally and numerically evaluate small-scale cryosurgery using an ultrafine cryoprobe. The outer diameter (OD) of the cryoprobe was 550 μm. The cooling performance of the cryoprobe was tested with a freezing experiment using hydrogel at 37 °C. As a result of 1 min of cooling, the surface temperature of the cryoprobe reached −35 °C and the radius of the frozen region was 2 mm. To evaluate the temperature distribution, a numerical simulation was conducted. The temperature distribution in the frozen region and the heat transfer coefficient was discussed.


Sign in / Sign up

Export Citation Format

Share Document