Influence of Coolant Density on Turbine Blade Film-Cooling With Axial Shaped Holes

Author(s):  
Kevin Liu ◽  
Shang-Feng Yang ◽  
Je-Chin Han
Keyword(s):  
AIP Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 015333
Author(s):  
Xiaojian He ◽  
Haiwang Li ◽  
Guoqin Zhao ◽  
Ruquan You

2014 ◽  
Vol 971-973 ◽  
pp. 143-147 ◽  
Author(s):  
Ping Dai ◽  
Shuang Xiu Li

The development of a new generation of high performance gas turbine engines requires gas turbines to be operated at very high inlet temperatures, which are much higher than the allowable metal temperatures. Consequently, this necessitates the need for advanced cooling techniques. Among the numerous cooling technologies, the film cooling technology has superior advantages and relatively favorable application prospect. The recent research progress of film cooling techniques for gas turbine blade is reviewed and basic principle of film cooling is also illustrated. Progress on rotor blade and stationary blade of film cooling are introduced. Film cooling development of leading-edge was also generalized. Effect of various factor on cooling effectiveness and effect of the shape of the injection holes on plate film cooling are discussed. In addition, with respect to progress of discharge coefficient is presented. In the last, the future development trend and future investigation direction of film cooling are prospected.


Energy ◽  
2014 ◽  
Vol 72 ◽  
pp. 331-343 ◽  
Author(s):  
Jun Su Park ◽  
Dong Hyun Lee ◽  
Dong-Ho Rhee ◽  
Shin Hyung Kang ◽  
Hyung Hee Cho

Author(s):  
Andre´ Burdet ◽  
Reza S. Abhari

A feature-based jet model has been proposed for use in 3D CFD prediction of turbine blade film cooling. The goal of the model is to be able to perform computationally efficient flow prediction and optimization of film-cooled turbine blades. The model reproduces in the near hole region the macro flow features of a coolant jet within a Reynolds-Averaged Navier Stokes (RANS) framework. Numerical predictions of the 3D flow through a linear transonic film-cooled turbine cascade are carried out with the model, with a low computational overhead. Different cooling holes arrangement are computed and the prediction accuracy is evaluated versus experimental data. It shown that the present model provides a reasonably good prediction of the adiabatic film-cooling effectiveness and Nusselt number around the blade. A numerical analysis of the interaction of coolant jets issuing from different rows of holes on the blade pressure side is carried out. It is shown that the upward radial migration of the flow due to the passage secondary flow structure has an impact on the spreading of the coolant and the film cooling effectiveness on the blade surface. Based on this result, a new arrangement of the cooling holes for the present case is proposed that leads to a better spanwise covering of the coolant on the blade pressure side surface.


2003 ◽  
Vol 125 (4) ◽  
pp. 648-657 ◽  
Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Experimental investigations were performed to measure the detailed heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film cooling holes on the pressure side near the tip region and the tip surface along the camber line. Hue detection based transient liquid crystals technique was used to measure heat transfer coefficients and film cooling effectiveness. All measurements were done for the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1×106 and the total turning angle of the blade was 97.9 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach numbers were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.


Author(s):  
Y. W. Kim ◽  
W. Abdel-Messeh ◽  
J. P. Downs ◽  
F. O. Soechting ◽  
G. D. Steuber ◽  
...  

The clearance gap between the stationary outer air seal and blade tips of an axial turbine allows a clearance gap leakage flow to be driven through the gap by the pressure-to-suction side pressure difference. The presence of strong secondary flows on the pressure side of the airfoil tends to deliver air from the hottest regions of the mainstream to the clearance gap. The blade tip region, particularly near the trailing edge, is very difficult to cool adequately with blade internal coolant flow. In this case, film cooling injection directly onto the blade tip region can be used in an attempt to directly reduce the heat transfer rates from the hot gases in the clearance gap to the blade tip. The present paper is intended as a memorial tribute to the late Professor Darryl E. Metzger who has made significant contributions in this particular area over the past decade. A summary of this work is made to present the results of his more recent experimental work that has been performed to investigate the effects of film coolant injection on convection heat transfer to the turbine blade tip for a variety of tip shapes and coolant injection configurations. Experiments are conducted with blade tip models that are stationary relative to the simulated outer air seal based on the result of earlier works that found the leakage flow to be mainly a pressure-driven flow which is related strongly to the airfoil pressure loading distribution and only weakly, if at all, to the relative motion between blade tip and shroud. Both heat transfer and film effectiveness are measured locally over the test surface using a transient thermal liquid crystal test technique with a computer vision data acquisition and reduction system for various combinations of clearance heights, clearance flow Reynolds numbers, and film flow rates with different coolant injection configurations. The present results reveal a strong dependency of film cooling performance on the choice of the coolant supply hole shapes and injection locations for a given tip geometry.


Sign in / Sign up

Export Citation Format

Share Document