Effects of Leading Edge Film-Cooling and Surface Roughness on the Downstream Film-Cooling Along a Transonic Turbine Blade for Low and High Free-Stream Turbulence

2008 ◽  
Author(s):  
Sam Raben ◽  
Pavlos Vlachos ◽  
Wing Ng
1996 ◽  
Vol 118 (2) ◽  
pp. 327-333 ◽  
Author(s):  
H. Wanda Jiang ◽  
J.-C. Han

Experiments were performed to study the effect of film hole row location on local film effectiveness distribution of a turbine blade model with air or CO2 film injection. Tests were performed on a five-blade linear cascade at the chord Reynolds number of 3.0 × 105 at the cascade inlet. A combination of turbulence grid and unsteady wake was used to create a higher free-stream turbulence level. The test blade had three rows of film holes in the leading edge region and two rows each on the pressure and suction surfaces. Film hole row locations were set by leaving the film holes at that row location open and covering the remaining rows. In addition, the additive nature of film cooling on the turbine blade model was examined by comparing the measured film effectiveness with the predicted effectiveness from the superposition method. Results show that injection from a different film hole row location provides a different effectiveness distribution on pressure and suction surfaces depending on local mainstream velocity and blade curvature. In most cases, the superposition method holds downstream of the last film hole row.


Author(s):  
Donald L. Schmidt ◽  
David G. Bogard

A flat plate test section was used to study how high free-stream turbulence with large turbulence length scales, representative of the turbine environment, affect the film cooling adiabatic effectiveness and heat transfer coefficient for a round hole film cooling geometry. This study also examined cooling performance with combined high free-stream turbulence and a rough surface which simulated the roughness representative of an in-service turbine. The injection was from a single row of film cooling holes with injection angle of 30°. The density ratio of the injectant to the mainstream was 2.0 for the adiabatic effectiveness tests, and 1.0 for the heat transfer coefficient tests. Streamwise and lateral distributions of adiabatic effectiveness and heat transfer coefficients were obtained at locations from 2 to 90 hole diameters downstream. At small to moderate momentum flux ratios, which would normally be considered optimum blowing conditions, high free-stream turbulence dramatically decreased adiabatic effectiveness. However, at large momentum flux ratios, conditions for which the film cooling jet would normally be detached, high free-stream turbulence caused an increase in adiabatic effectiveness. The combination of high free-stream turbulence with surface roughness resulted in an increase in adiabatic effectiveness relative to the smooth wall with high free-stream turbulence. Heat transfer rates were relatively unaffected by a film cooling injection. The key result from this study was a substantial increase in the momentum flux ratios for maximum film cooling performance which occurred for high free-stream turbulence and surface roughness conditions which are more representative of actual turbine conditions.


Author(s):  
Ting Wang ◽  
Matthew C. Rice

The surface roughness over a serviced turbine airfoil is usually multi-scaled with varying features that are difficult to be universally characterized. However, it was previously discovered in low freestream turbulence conditions that the height of larger roughness produces separation and vortex shedding, which trigger early transition and exert a dominant effect on flow pattern and heat transfer. The geometry of the roughness and smaller roughness scales played secondary roles. This paper extends the previous study to elevated turbulence conditions with free-stream turbulence intensity ranging from 0.2–6.0 percent. A simplified test condition on a flat plate is conducted with two discrete regions having different surface roughness. The leading edge roughness is comprised of a sandpaper strip or a single cylinder. The downstream surface is either smooth or covered with sandpaper of grit sizes ranging from 100 ∼ 40 (Ra = 37 ∼ 119 μm). Hot wire measurements are conducted in the boundary layer to study the flow structure. The results of this study verify that the height of the largest-scale roughness triggers an earlier transition even under elevated turbulence conditions and exerts a more dominant effect on flow and heat transfer than does the geometry of the roughness. Heat transfer enhancements of about 30 ∼ 40 percent over the entire test surface are observed. The vortical motion, generated by the backward facing step at the joint of two roughness regions, is believed to significantly increase momentum transport across the boundary layer and bring the elevated turbulence from the freestream towards the wall. No such long-lasting heat transfer phenomenon is observed in low FSTI cases even though vortex shedding also exists in the low turbulence cases. The heat transfer enhancement decreases, instead of increases, as the downstream roughness height increases.


Author(s):  
Michael W. Cruse ◽  
Ushio M. Yuki ◽  
David G. Bogard

Film cooling adiabatic effectiveness of a simulated turbine airfoil leading edge was studied experimentally. The leading edge had two rows of holes, one at nominally the stagnation line position and the second a few hole diameters downstream. Hole positions at the leading edge, and inclination of the holes with respect to the surface, were different than typically used in previous studies, but were representative of current design practice. Various leading edge film cooling parameters were investigated including stagnation line position, free-stream turbulence level, leading edge geometry, and coolant to mainstream density ratio. Large density ratios were obtained by cooling the injected coolant to very low temperatures. Large scale, high level free-stream turbulence (Tu = 20%) was generated using a specially developed cross-jet turbulence generator. An infrared camera system was used to obtain well resolved surface temperature distributions around the coolant holes and across the leading edge. Results from the experiments showed considerably higher optimum blowing ratios than found in previous studies. The stagnation line position was found to be important in influencing the direction of coolant flow from the first row of holes. High free-stream turbulence levels were found to greatly decrease adiabatic effectiveness at low blowing ratios (M = 1.0), but had little effect at high blowing ratios (M = 2.0 and 2.5). Adiabatic effectiveness distributions were very similar for circular and elliptical leading edges. Experiments conducted at coolant to mainstream density ratios of 1.1 and 1.8 showed distinctly different flow characteristics in the stagnation line region for the different density ratio coolants.


1985 ◽  
Vol 107 (1) ◽  
pp. 127-134 ◽  
Author(s):  
H. P. Hodson

The state of the boundary layers near the leading edge of a high-speed turbine blade has been investigated, in cascade, using an array of surface-mounted, constant-temperature, hot-film anemometers. The measurements are interpreted with the aid of inviscid and viscous prediction codes. The effects of Reynolds number, compressibility, incidence, and free-stream turbulence are described. In all cases, the initial development of the boundary layers was extremely complex and, even at design conditions, separation and reattachment, transition and relaminarization were found to occur.


1993 ◽  
Author(s):  
David Greenblatt

A computational procedure has been developed which accounts for the combined time-mean effect of wake-passing and free-stream turbulence on laminar turbine blade boundary layers. The procedure has the advantage of being computationally efficient as well as providing a realistic model of the unsteady nature of the flow. The procedure yielded the parameter TuReD/σD/2 for characterizing the time-mean flow in the leading edge region and the parameter Γ≡2T~u2σx/γ for describing the flow downstream of the stagnation point. A provisional comparison with stagnation flow experimental data showed that the procedure may be more general than initially expected.


Author(s):  
Prasert Prapamonthon ◽  
Huazhao Xu ◽  
Jianhua Wang ◽  
Ge Li

The thermal efficiency of gas turbine engines increases with turbine inlet temperature (TIT) directly. However, the TIT is limited by the allowable temperature of current blade materials. Film cooling technique is an effective method to maintain turbine vane working smoothly under high TIT conditions. The adiabatic film effectiveness has been widely employed to understand film cooling mechanism. Therefore, the prediction of the adiabatic effectiveness of gas turbine engines under real operating conditions is essential. The showerhead film cooled turbine vane reported by L. P. Timko (NASA CR-168289) is adopted in the present study. There are two rows of film holes on the leading edge, three rows on the pressure side, and two rows on the suction side. All holes are cylindrical, which are placed at an angle of 45 degrees to the vane surface in the span-wise direction. This numerical investigation discusses the influences of free stream turbulence intensity on the adiabatic film effectiveness in the vane leading edge region and its vicinity. Five two-equation turbulence models based on Reynolds Averaged Navier-Stokes (RANS) are employed to predict the adiabatic film effectiveness under real operating conditions at a blowing ratio (BR) of 1.41 and three free stream turbulence intensities (Tu=3.3, 10, and 20%). The adiabatic film effectiveness on the vane surface at 8, 52.5, and 89% span in an x/C range between −0.4 and 0.4 is presented. Obviously, the numerical results predicted by all five models show that on the suction side, the increasing free stream turbulence intensity can reduce film effectiveness except at 8% span. On the pressure side, the RNG k-ε, Realizable k-ε and SST k-ω models predict the same trend of the adiabatic film effectiveness, especially the RNG k-ε and SST k-ω models. Those three models predict that the locally adiabatic film effectiveness (especially near film holes) can be improved when turbulence intensity increases. However, at a span of 89% within the x/C range between −0.4 and −0.2, all k-ε models and SST k-ω model predict that the increase of turbulence intensity can reduce the adiabatic film effectiveness. In addition, the film effectiveness contours show a significant variation of film effectiveness predicted by the five turbulence models on the leading edge when turbulence intensity increases. For the near-pressure side, all models except the Standard k-ω model predict that the high turbulence intensity can reduce the film spreading from film holes dramatically.


Sign in / Sign up

Export Citation Format

Share Document