Numerical Methods for Simulating the Reduction of Iron Ore in Blast Furnace Shaft

Author(s):  
Dong Fu ◽  
Yan Chen ◽  
Chenn Q. Zhou

The blast furnace process is a counter-current moving bed chemical reactor to reduce iron oxides to iron, which involves complex transport phenomena and chemical reactions. The iron ore and coke are alternatively charged into the blast furnace, forming a layer by layer structural burden which is slowly descending in the counter-current direction of the ascending gas flow. A new methodology was proposed to efficiently simulate the gas and solid burden flow in the counter current moving bed in blast furnace shaft. The gas dynamics, burden movement, chemical reactions, heat and mass transfer between the gas phase and solid phase are included. The new methodology has been developed to explicitly consider the effects of the layer thickness thermally and chemically in the CFD model.

Author(s):  
Dong Fu ◽  
Chenn Q. Zhou ◽  
Yan Chen

The blast furnace process is a counter-current moving bed chemical reactor to reduce iron oxides to iron, which involves complex transport phenomena and chemical reactions. The iron ore and coke are alternatively charged into the blast furnace, forming a layer by layer structural burden which is slowly descending in the counter-current direction of the ascending gas flow. A new methodology was proposed to efficiently simulate the gas and solid burden flow in the counter-current moving bed in blast furnace shaft. The gas dynamics, burden movement, chemical reactions, heat and mass transfer between the gas phase and solid phase are included. The new methodology has been developed to explicitly consider the effects of the layer thickness thermally and chemically in the CFD model.


2011 ◽  
Vol 51 (10) ◽  
pp. 1617-1623 ◽  
Author(s):  
Jong-In Park ◽  
Ui-Hyun Baek ◽  
Kyoung-Soo Jang ◽  
Han-Sang Oh ◽  
Jeong-Whan Han

Author(s):  
Dong Fu ◽  
Fengguo Tian ◽  
Guoheng Chen ◽  
D. Frank Huang ◽  
Chenn Q. Zhou

Gas and burden distributions inside a blast furnace play an important role in optimizing gas utilization versus the furnace productivity and minimizing the CO2 emission in steel industries. In this paper, a mathematical model is presented to describe the burden descent in the blast furnace shaft and gas distribution, with the alternative structure of coke and ore layers being considered. Multi-dimensional Ergun’s equation is solved with considering the turbulent compressible gas flow through the burden column. The porosity of each material will be treated as a function of three dimensional functions which will be determined by the kinetics sub-models accordingly. A detailed investigation of gas flow through the blast furnace will be conducted with the given initial burden profiles along with the effects of redistribution during burden descending. Also, parametric studies will be carried out to analyze the gas distribution cross the blast furnace under different cohesive zone (CZ) shapes, charging rate, and furnace top pressure. A good agreement was obtained between the CFD simulation and published experimental data. Based on the results, the inverse V shape is proved to be the most desirable CZ profile.


2012 ◽  
Vol 52 (7) ◽  
pp. 1257-1265 ◽  
Author(s):  
Mikko Iljana ◽  
Olli Mattila ◽  
Tuomas Alatarvas ◽  
Ville-Valtteri Visuri ◽  
Jari Kurikkala ◽  
...  

2015 ◽  
Vol 86 (4) ◽  
pp. 320-328 ◽  
Author(s):  
Pavlina Pustejovska ◽  
Jiri Tuma ◽  
Vladimir Stanek ◽  
Jiri Kristal ◽  
Simona Jursova ◽  
...  

2004 ◽  
Vol 44 (3) ◽  
pp. 518-526 ◽  
Author(s):  
Juan Jiménez ◽  
Javier Mochón ◽  
Jesús Sainz de Ayala

2013 ◽  
Vol 53 (3) ◽  
pp. 419-426 ◽  
Author(s):  
Mikko Iljana ◽  
Olli Mattila ◽  
Tuomas Alatarvas ◽  
Jari Kurikkala ◽  
Timo Paananen ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1003 ◽  
Author(s):  
Li ◽  
Saxén ◽  
Liu ◽  
Zou ◽  
Shao

The distribution of burden layers in an ironmaking blast furnace strongly influences the conditions in the upper part of the process. The bed permeability largely depends on the distribution of ore and coke in the lumpy zone, which affects the radial gas flow distribution in the shaft. Along with the continuous advancement of technology, more information about the internal conditions of the blast furnace can be obtained through advanced measurement equipment, including 2D profiles and 3D surface maps of the top burden surface. However, the change of layer structure along with the burden descent cannot be directly measured. A mathematical model predicting the burden distribution and the internal layer structure during the descending process is established in this paper. The accuracy of the burden distribution model is verified by a comparison with experimental results. A sensitivity study was undertaken to clarify the role of some factors on the arising layer distribution, including the descent-rate distribution, the initial burden surface profile, and the charging direction through the charging matrix. The findings can be used as a theoretical basis to guide plant operations for optimizing the charging.


Sign in / Sign up

Export Citation Format

Share Document