Cryogenic Temperature Monitoring via Optical PDMS Sensors

Author(s):  
Matthew Frenkel ◽  
Zhixiong Guo

PDMS micro-sensors coated onto an electrical wire are used to measure dynamic temperature variation at cryogenic range based on optical whispering-gallery mode (WGM) frequency shift principle. We designed a lab cryogenic cell via filling liquid nitrogen to create a stable low temperature down to 95K. The electrical wire is current carrying to simulate a working electrical/electronic component/device. The temperature variation due to Joule heating is monitored. The sensors are tested for their real time temperature monitoring capabilities and accuracy in the cryogenic temperature regime of 95–140K.

Author(s):  
Matthew Frenkel ◽  
Marlon Avellan ◽  
Zhixiong Guo

It has been previously demonstrated that the optical whispering-gallery modes inside a micro-sphere resonators can be used for extremely sensitive temperature sensing. This work attempts to utilize the high-resolution measurements of an optical micro-annulus in order to detect the temperature change in a current carrying wire. A wire is coated with a thin layer of dielectric material as an annular sensor and positioned next to an optical taper. Current is then run through the wire to create joule heating and the temperature change is correlated with the frequency shift in the whispering-gallery mode resonance inside the micro-annulus. The experimental results will be analyzed and presented.


2009 ◽  
Vol E92-C (12) ◽  
pp. 1504-1511 ◽  
Author(s):  
Thi Huong TRAN ◽  
Yuanfeng SHE ◽  
Jiro HIROKAWA ◽  
Kimio SAKURAI ◽  
Yoshinori KOGAMI ◽  
...  

2021 ◽  
Vol 142 ◽  
pp. 107254
Author(s):  
Jing Yan ◽  
D.N. Wang ◽  
Xin Liu ◽  
Jikai Chen

2021 ◽  
Vol 17 (4) ◽  
pp. 199-204
Author(s):  
Yu Liu ◽  
Hui-hui Yang ◽  
Yong-le Lu ◽  
Ke Di ◽  
Jun-qi Guo

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jie Liao ◽  
Lan Yang

AbstractTemperature is one of the most fundamental physical properties to characterize various physical, chemical, and biological processes. Even a slight change in temperature could have an impact on the status or dynamics of a system. Thus, there is a great need for high-precision and large-dynamic-range temperature measurements. Conventional temperature sensors encounter difficulties in high-precision thermal sensing on the submicron scale. Recently, optical whispering-gallery mode (WGM) sensors have shown promise for many sensing applications, such as thermal sensing, magnetic detection, and biosensing. However, despite their superior sensitivity, the conventional sensing method for WGM resonators relies on tracking the changes in a single mode, which limits the dynamic range constrained by the laser source that has to be fine-tuned in a timely manner to follow the selected mode during the measurement. Moreover, we cannot derive the actual temperature from the spectrum directly but rather derive a relative temperature change. Here, we demonstrate an optical WGM barcode technique involving simultaneous monitoring of the patterns of multiple modes that can provide a direct temperature readout from the spectrum. The measurement relies on the patterns of multiple modes in the WGM spectrum instead of the changes of a particular mode. It can provide us with more information than the single-mode spectrum, such as the precise measurement of actual temperatures. Leveraging the high sensitivity of WGMs and eliminating the need to monitor particular modes, this work lays the foundation for developing a high-performance temperature sensor with not only superior sensitivity but also a broad dynamic range.


2021 ◽  
pp. 2100143
Author(s):  
Yongpeng Chen ◽  
Yin Yin ◽  
Libo Ma ◽  
Oliver G. Schmidt

Sign in / Sign up

Export Citation Format

Share Document